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Gated Recurrent Neural Networks

Well-known examples: LSTM and GRU

State-of-the-art results in many challenging ML tasks

Figure: Google Duplex
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Siri, Alexa and more...



NNs and RNNs

Feed-forward neural networks

Recurrent neural networks (Vanilla)



Gated RNNs

Figure: Gated Recurrent Unit (GRU)

Key features:

Gating mechanism

Non-linear ’switching’ dynamical systems

Long term memory



GRU

Gates: zt , rt ∈ [0,1]d depend on the input xt and the past ht−1

States: ht , h̃t ∈ Rd

Update equations for each t:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t

h̃t = f (Axt + rt ⊙Bht−1)



Building blocks of GRU

ht = (1 − zt)⊙ ht−1 + zt ⊙ (1 − rt)⊙ f (Axt) + zt ⊙ rt ⊙ f (Axt +Bht−1)
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Mixture-of-Experts: Building blocks of GRU

Jacobs, Jordan, Nowlan and Hinton, 1991
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f = sigmoid, g = linear, tanh,ReLU



MoE as gated feed-forward network
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(a) 2-node NN
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MoE: Modern relevance

Outrageously large neural networks



What is known about MoE?

No provable learning algorithms for parameters1 /

120 years of MoE, MoE: a literature survey



Open problem for 25+ years

g(a⊺1x) g(a⊺2x)

f
1 − f

xx

y

f (w⊺x)

x

⇔ Py ∣x = f (w⊺x) ⋅N (y ∣g(a⊺1x), σ2) + (1 − f (w⊺x)) ⋅N (y ∣g(a⊺2x), σ2)

Open question

Given n i.i.d. samples (x(i), y (i)), does there exist an efficient learning
algorithm with provable theoretical guarantees to learn the regressors
a1,a2 and the gating parameter w?



Traditional loss functions
Loss functions:

Log-likelihood loss

L = log(f (w⊺x) ⋅ e−
∥y−g(a⊺

1
x)∥2

2σ2 + (1 − f (w⊺x)) ⋅ e−
∥y−g(a⊺

2
x)∥2

2σ2 )

L2-loss

L = (y − (f (w⊺x)g(a⊺1x) + (1 − f (w⊺x))g(a⊺2x)))
2



Traditional algorithms

Algorithms: EM, Gradient descent, and their variants

Practical: Often get stuck in local optima

Theoretical: Loss surface is hard to analyze because of coupling of w
and (a1,a2). Just understood for far simpler problem of Gaussian
mixtures



Modular structure

Mixture of classification (w) and regression (a1,a2) problems



Key observation

Key observation

If we know the regressors, learning the gating parameter is easy and
vice-versa. How to break the gridlock?



Focus of this talk: Breaking the gridlock

First learning guarantees for MoE

Two novel approaches to learn the parameters:

Method 1: Algorithms

We propose a novel algorithm with first recoverable guarantees

Method 2: Optimization framework

We design a non-trivial loss function on which traditional algorithms like
GD converge to true parameters

Both approaches work with global initializations
▸ restriction: x is Gaussian



Generalizability

k-MoE



Generalizability

Hierarchical mixture of experts (HME)



Method 1: Design of algorithms



Algorithmic approach: An overview

Recall the model for MoE:

Py ∣x = f (w⊺x) ⋅N (y ∣g(a⊺1x), σ2) + (1 − f (w⊺x)) ⋅N (y ∣g(a⊺2x), σ2)

We learn (a1,a2) and w separately

First recover (a1,a2) without knowing w at all

Later learn w using traditional methods like EM

Global consistency guarantees (population setting)



Learning regressors without gating

Model for MoE:

Py ∣x = f (w⊺x) ⋅N (y ∣g(a⊺1x), σ2) + (1 − f (w⊺x)) ⋅N (y ∣g(a⊺2x), σ2)

Without gating:

Py ∣x = p ⋅N (y ∣g(a⊺1x), σ2) + (1 − p) ⋅N (y ∣g(a⊺2x), σ2)

Mixture of generalized linear models (GLMs)!
▸ How do we learn a1 and a2 without knowing p?

▸ Method of moments



Tensor methods in latent variable models

Anandkumar, Ge, Hsu, Kakade, and Telgarsky 2014



Tensor methods in GLMs



Main approach

Basic idea: Construct a third-order super-symmetric tensor from
data such that

E(ψ(X ,Y )) =∑
i

ai ⊗ ai ⊗ ai ⇒ ai can be recovered

How do we construct ψ?
▸ Stein’s lemma



Stein’s lemma 101

Stein’s lemma

For f ∶ Rd → R and x ∼ N (0, Id),

E[f (x) ⋅ x] = E[∇x f (x)] ∈ Rd .

Non-linear regression using Stein’s lemma: If y = g(a⊺1x) +N, then

E[y ⋅ x]
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

Estimated from samples

= E[g(a⊺1x) ⋅ x] +E[N ⋅ x]
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= E[∇xg(a⊺1x)]
∝ a1



Mixture of GLMs: Stein’s lemma 101

Recall, for mixture of GLMs:

Py ∣x = p ⋅N (y ∣g(a⊺1x), σ2) + (1 − p) ⋅N (y ∣g(a⊺2x), σ2)

From Stein’s lemma,

E[y ⋅ x]∝ p ⋅ a1 + (1 − p) ⋅ a2.

Not unique in a1 and a2

How can we ensure uniqueness?



Stein’s lemma 102

2nd order Stein’s lemma

E[f (x) ⋅ (xx⊺ − I )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S2(x)

] = E[∇(2)
x f (x)] ∈ Rd×d .

Mixture of GLMs:

Py ∣x = p ⋅N (y ∣g(a⊺1x), σ2) + (1 − p) ⋅N (y ∣g(a⊺2x), σ2)
⇒ E[y ⋅ (xx⊺ − I )]∝ 2p ⋅ a1a⊺1 + 2(1 − p) ⋅ a2a⊺2 .

Not unique!

How can we ensure uniqueness?



Stein’s lemma 103

3rd order Stein’s lemma

E[f (x) ⋅ S3(x)] = E[∇(3)
x f (x)] ∈ Rd×d×d

Score transformation S3(x) = x ⊗ x ⊗ x −∑i∈[d] sym(x ⊗ e i ⊗ e i)

Mixture of GLMs:

Py ∣x = p ⋅N (y ∣g(a⊺1x), σ2) + (1 − p) ⋅N (y ∣g(a⊺2x), σ2)
⇒ E[y ⋅ S3(x)]∝ p ⋅ a1 ⊗ a1 ⊗ a1 + (1 − p) ⋅ a2 ⊗ a2 ⊗ a2.

Unique! (by Kruskal’s theorem)

Can we extend this to MoE?



MoE: Stein’s lemma

For MoE, p = p(x) = f (w⊺x) since

Py ∣x = f (w⊺x) ⋅N (y ∣g(a⊺1x), σ2) + (1 − f (w⊺x)) ⋅N (y ∣g(a⊺2x), σ2)

Can we use Stein’s lemma to learn a1 and a2?

Natural attempt:

E[y ⋅ S3(x)] = a1 ⊗ a1 ⊗ a1 +w ⊗ a1 ⊗w + . . . + a1 ⊗ a1 ⊗w + . . .

Not a super-symmetric tensor

Can we construct a super-symmetric tensor for MoE?



Key insight: Hermite polynomial transformation

Suppose g =linear and σ = 0. Then

Py ∣x = f (w⊺x) ⋅ 1{y = a⊺1x} + (1 − f (w⊺x))1{y = a⊺1x}
⇒ E[y3 − 3y ∣x] = ∑

i∈{1,2}
f (w⊺

i x)((a⊺i x)3 − 3(a⊺i x)), w2 = −w1

Now applying Stein’s lemma,

E[(y3 − 3y) ⋅ S3(x)] = E[∇3
xE[y3 − 3y ∣x]] = 3 ∑

i∈{1,2}‘
ai ⊗ ai ⊗ ai

How do cross terms like ai ⊗ ai ⊗w disappear?

Reason: E[H ′
3(Z)] = E[H ′′

3 (Z)] = E[H ′′′
3 (Z)] = 0

H3(z) = z3 − 3z is third-Hermite polynomial

Does this work for σ ≠ 0?
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Linear experts: Hermite-like-polynomials

Suppose g = linear and σ ≠ 0:

Py ∣x = f (w⊺x) ⋅N (y ∣a⊺1x , σ2) + (1 − f (w⊺x)) ⋅N (y ∣a⊺2x , σ2)

Super-symmetric tensor

T3 = E[(y3 − 3y(1 + σ2)) ⋅ S3(x)] = 3(a1 ⊗ a1 ⊗ a1 + a2 ⊗ a2 ⊗ a2)

This very much needs special linear structure. What about other
non-linearities for g?



Generalization: Cubic polynomial transformations

For a wide class of non-linearities such as g=linear, sigmoid, ReLU,
etc.

T3 = E[(y3 + αy2 + βy) ⋅ S3(x)] = c(a1 ⊗ a1 ⊗ a1 + a2 ⊗ a2 ⊗ a2)

How do we choose α and β?
▸ Solving a linear system
▸ Example: For sigmoid,

[0.2067 0.2066
0.0624 −0.0001

] [α
β
] = [−0.1755 − 0.6199σ2

−0.0936
]

Key idea: Acts like a ’Hermite’ like polynomial for general g and
cancels cross terms



Learning regressors: Spectral decomposition

Algorithm

Input: Samples (x i , yi)
Compute T̂3 = (1/n)∑i H3(yi) ⋅ S3(x i)
â1, â2 = Rank-2 decomposition on T3



Learning the gating

Recall

Py ∣x = f (w⊺x) ⋅N (y ∣a⊺1x , σ2) + (1 − f (w⊺x)) ⋅N (y ∣a⊺2x , σ2)

If we know a1 and a2, learning w is a classification problem!

Traditional methods:
▸ EM algorithm
▸ Gradient descent on log-likelihood



Theoretical contributions

Show global convergence for existing methods

Provide convergence rate

Finite sample complexity

First theoretical guarantees



Learning the gating parameters

Suppose spectral methods give âi with ∥âi − ai∥2 ≤ σ2ε

For high SNR, i.e. σ < σ0, σ0 is a dimension independent constant:

EM iterates converge geometrically to ŵ
Convergence rate is a dimension-independent constant depending on
σ and ∥a1 − a2∥
ŵ is ε-close to the ground truth



Comparison with EM
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Figure: Plot of parameter estimation error



Method 2: Optimization framework-loss function design



Regressors: Loss function design

Py ∣x = f (w⊺x) ⋅N (y ∣g(a⊺1x), σ2) + (1 − f (w⊺x)) ⋅N (y ∣g(a⊺2x), σ2)

Traditional approaches: l2-loss, log-likelihood loss
▸ Get stuck in local minima
▸ No theoretical analysis
▸ Single loss function for both (a1,a2) and w

Formulation of right loss function is critical (Jacobs et. al 1991)



Theoretical contributions

Separate loss functions L4 and Llog to learn (a1,a2) and w

L4

4-order tensor loss

{â1, â2}

Llog

Log-likelihood loss

ŵ

Quartic Transform

Score function

Samples

x

y

Gradient descent on both L4 and Llog. What are they?



Tensor based loss function for regressors

For linear experts,

Py ∣x = f (w⊺x) ⋅N (y ∣a⊺1x , σ2) + (1 − f (w⊺x)) ⋅N (y ∣a⊺2x , σ2)

Stein’s lemma+ 4-Hermite polynomial implies

T4 = E[(y4 − 6y2(1 + σ2)) ⋅ S4(x)] = 12(a⊗41 + a⊗42 )

If â1 and â2 are parameters,

L4(â1, â2) ≜∑
j≠k
T4(âj , âj , âk , âk) − µ ∑

j∈{1,2}
T4(âj , âj , âj , âj)

+ λ ∑
j∈{1,2}

(∥âj∥2 − 1)2



Landscape of L4

Properties

No spurious local minima: All local minima are global

Global minima are ground truth (upto permutation and sign-flip)

All saddle points have negative curvature

SGD converges to approximate global minima

Why L4?



Why L4?

We provide a non-trivial connection to tensor based losses

We can show that

L4(â1, â2) = 12∑
i
∑
j≠k

⟨ai , âj⟩2⟨ai , âk⟩2 − 12µ∑
i
∑
j

⟨ai , âj⟩4

+ λ∑
j

(∥aj∥2 − 1)2

4-order tensor loss
▸ Landscape analysis in (Ge et. al 2018)



Empirical performance

(a) `2 vs. L4 (b) `2 vs. Llog

Figure: Plot of parameter estimation error



Summary

Algorithmic innovation: First provably consistent algorithms for MoE
in 25+ years

Loss function innovation: First SGD based algorithm on novel loss
functions with provably nice landscape properties

Sample complexity: First sample complexity results for MoE

Global convergence: Our algorithms work with global initializations



Open questions-I

Conjecture

EM algorithm recovers both the regression parameters a1,a2 and gating
parameter w globally for 2-MoE

It is known that EM learns the true parameters globally for

2-symmetric mixture of Gaussians (Xu 2016, Daskalakis 2017)

2-symmetric mixture of linear regressions



Open questions-II

Minimax rates and optimal algorithms

Learning algorithms for time-series?

Generalizing to non-Gaussian inputs
▸ Results: In the absence of gating, we have a loss function framework to

provably learn the regressors
▸ With gating?
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Conclusion



Thank you!
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