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Problem statement

Q: source
P: target

Y T(Y)
T

Rd

OT map = argmin
T

EQ∥T (Y ) −Y ∥
2 s.t. T#Q = P

Objective:

Given: {Yi}
n
i=1 ∼ Q, {Xi}

n
i=1 ∼ P

Goal: Approximate the OT map
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Solution overview

Min-max formulation:

inf
f ∈CVX(Rd)
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g∈CVX(Rd)
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Why optimal transportation?

Probability distributions appear in many machine learning models

OT gives a natural geometry for probability distributions

It has fascinating theory (one Nobel prize and two fields medal)

Applications:

Generative models: (Arjovsky et al. 2017, Tolstikhin et al. 2018,. . . )

Domain adaptation: (Courty et. al. 2017,. . . )

Bayesian inference: (El Moselhy & Marzouk 2012, Reich 2013,. . . )

Image processing: (Rabin et. al. 2011, Su et. al. 2015,. . . )

Sensor fusion: (Staib et. al. 2017, Srivastav et. al. 2018,. . . )

. . .

This work: Numerical approximation of optimal transport map
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Discrete OT: see (Peyré & Cuturi 2019) for complete list

Linear programming

Sinkhorn iterations (Cuturi, 2013)
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Stochastic optimization: (Genevay et. al. 2016)

Continuous approaches:

with entropic/quadratic regularization (Seguy et. al. 2018)

adversarial procedure (Leygonie et al. 2019)
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This work:

no regularization

sample-based and scales to high-dimensions

ICNN parametrization: built upon (T. & Jalali 2019)
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Proposed methodology

Main steps:

1 Kantorovich dual formulation:
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3 Min-max formulation:
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g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology
Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

▸ Constraint Φ̃c ≜ {f (x) + h(y) ≥ ⟨x , y⟩, ∀x , y ∈ Rd} (challenging)

▸ Add entropic/quadratic regularization
(Cutury 2013, Genevay et. al. 2016, Seguy et. al. 2018,. . . )

▸ This work: no regularization

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology
Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

▸ Constraint Φ̃c ≜ {f (x) + h(y) ≥ ⟨x , y⟩, ∀x , y ∈ Rd} (challenging)

▸ Add entropic/quadratic regularization
(Cutury 2013, Genevay et. al. 2016, Seguy et. al. 2018,. . . )

▸ This work: no regularization

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology
Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

▸ Constraint Φ̃c ≜ {f (x) + h(y) ≥ ⟨x , y⟩, ∀x , y ∈ Rd} (challenging)

▸ Add entropic/quadratic regularization
(Cutury 2013, Genevay et. al. 2016, Seguy et. al. 2018,. . . )

▸ This work: no regularization

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology

Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology

Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology

Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

▸ Hard to compute/estimate f ∗

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology

Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Proposed methodology

Main steps:

1 Kantorovich dual formulation:

inf
(f ,h)∈Φ̃c

EP[f (X )] +EQ[h(Y )]

2 Semidual formulation: (hoptimal = f ∗)

inf
f ∈CVX(Rd)

EP[f (X )] + EQ[f ∗(Y )]

3 Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]



Theoretical results

Consistency: If source dist. Q admits density, then

∃ optimal pair (f0,g0) and ∇g0 is the OT map

Stability: For any (f ,g) such that f is α-strongly convex
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2
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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α
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Consistency of the method

Main result

Consider the min-max formulation

inf
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If Q admits density, then

There exists an optimal pair (f0,g0)

∇g0 is the OT map from Q to P

proof sketch: Using Fenchel’s inequality

⟨y ,∇g(y)⟩ − f (∇g(y)) ≤ f ∗(y), ∀g



Consistency of the method

Main result

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

If Q admits density, then

There exists an optimal pair (f0,g0)

∇g0 is the OT map from Q to P

proof sketch: Using Fenchel’s inequality

⟨y ,∇g(y)⟩ − f (∇g(y)) ≤ f ∗(y), ∀g



Consistency of the method

Main result

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

If Q admits density, then

There exists an optimal pair (f0,g0)

∇g0 is the OT map from Q to P

proof sketch: Using Fenchel’s inequality

⟨y ,∇g(y)⟩ − f (∇g(y)) ≤ f ∗(y), ∀g



Consistency of the method

Main result

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

If Q admits density, then

There exists an optimal pair (f0,g0)

∇g0 is the OT map from Q to P

proof sketch: Using Fenchel’s inequality

⟨y ,∇g(y)⟩ − f (∇g(y)) ≤ f ∗(y), ∀g



Stability analysis

Proposition

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

For any (f ,g) such that f is α-strongly convex

∥∇g −∇g0∥
2
L2(Q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error in estimating OT

≤
2

α
(ε1(f ,g) + ε2(f ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

optimization gap

ε1 is the optimality gap for max

ε2 is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hütter &
Rigollet 2019)



Stability analysis

Proposition

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

For any (f ,g) such that f is α-strongly convex

∥∇g −∇g0∥
2
L2(Q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error in estimating OT

≤
2

α
(ε1(f ,g) + ε2(f ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

optimization gap

ε1 is the optimality gap for max

ε2 is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hütter &
Rigollet 2019)



Stability analysis

Proposition

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

For any (f ,g) such that f is α-strongly convex

∥∇g −∇g0∥
2
L2(Q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error in estimating OT

≤
2

α
(ε1(f ,g) + ε2(f ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

optimization gap

ε1 is the optimality gap for max

ε2 is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hütter &
Rigollet 2019)



Stability analysis

Proposition

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

For any (f ,g) such that f is α-strongly convex

∥∇g −∇g0∥
2
L2(Q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error in estimating OT

≤
2

α
(ε1(f ,g) + ε2(f ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

optimization gap

ε1 is the optimality gap for max

ε2 is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hütter &
Rigollet 2019)



Stability analysis

Proposition

Consider the min-max formulation

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

For any (f ,g) such that f is α-strongly convex

∥∇g −∇g0∥
2
L2(Q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error in estimating OT

≤
2

α
(ε1(f ,g) + ε2(f ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

optimization gap

ε1 is the optimality gap for max

ε2 is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hütter &
Rigollet 2019)



Proposed method

Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Parametrization with ICNN

inf
f ∈ICNN(Rd)

sup
g∈ICNN(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Solve using stochastic optimization algorithm



Proposed method

Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Parametrization with ICNN

inf
f ∈ICNN(Rd)

sup
g∈ICNN(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Solve using stochastic optimization algorithm



Proposed method

Min-max formulation:

inf
f ∈CVX(Rd)

sup
g∈CVX(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Parametrization with ICNN

inf
f ∈ICNN(Rd)

sup
g∈ICNN(Rd)

EP[f (X )] + EQ[⟨Y ,∇g(Y )⟩ − f (∇g(Y ))]

Solve using stochastic optimization algorithm



Input Convex Neural Networks (ICNN)

W1 W2 WL-1...

...

(Amos et. al. 2016)

f (x , θ) is convex in x if

Wl ≥ 0 element-wise

σ0 is convex

σl is convex and non-decreasing for l = 1, . . . ,L − 1

Representation power: (Chen et. al. 2018)
- ICNN can approximate any convex function over a compact domain
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Proof-of-concept: Learning the OT map

Example I: Checkerboard

Example II: Mixture of Gaussians

The algorithm learns the OT map



Results on high-dim real data
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For more information, please visit the poster

Thank you!


