Optimal Transport Mapping via
Input Convex Neural Networks

International Conference on Machine Learning, Virtual, 2020

Ashok Vardhan Makkuva® and Amirhossein Taghvaei®

Joint work with Jason D. Lee and Sewoong Oh

University of lllinois at Urbana-Champaign
University of California, Irvine
Princeton University, University of Washington

*equal contribution

July 12-18, 2020



Problem statement

P: target
Q: source

Y T(Y)

Rd



Problem statement

P: target
Q: source
Rd
Y T(Y)
\T_/

OT map =argmin Eq|T(Y) - Y|? st. TxQ=P
T



Problem statement

P: target
Q: source
Rd
Y T(Y)
\T/

OT map =argmin Eq|T(Y) - Y|? st. TxQ=P
T

Objective:

Given: {Yi}i;~Q, {X}i,~FP
Goal: Approximate the OT map
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Solution overview

Min-max formulation:

inf

sup

feCVX(R)  gecyx(RY)

oT map = vgoptimal

Parametrize CVX(RY) with ICNN

Ep[f(X)] + EQ[{Y,ve(Y)) - f(ve(Y))]

Solve using stochastic optimization algorithm

o Target distribution

© Souce distribution

—— Transportmap e Generated dist.




QOutline

@ Motivation and related literature
@ Proposed methodology and theoretical results

@ Numerical algorithm and experiments
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@ Probability distributions appear in many machine learning models

o OT gives a natural geometry for probability distributions

e It has fascinating theory (one Nobel prize and two fields medal)

Applications:
o Generative models: (Arjovsky et al. 2017, Tolstikhin et al. 2018,...)
e Domain adaptation: (Courty et. al. 2017,...)
@ Bayesian inference: (El Moselhy & Marzouk 2012, Reich 2013,...)
@ Image processing: (Rabin et. al. 2011, Su et. al. 2015,...)
@ Sensor fusion: (Staib et. al. 2017, Srivastav et. al. 2018,...)

This work: Numerical approximation of optimal transport map
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Discrete OT: see (Peyré & Cuturi 2019) for complete list
@ Linear programming
@ Sinkhorn iterations (Cuturi, 2013)

Semi-discrete OT:
e Computationoal geometry: (Mérigot 2011, Guo et. al. 2019)
@ Stochastic optimization: (Genevay et. al. 2016)

Continuous approaches:
@ with entropic/quadratic regularization (Seguy et. al. 2018)
@ adversarial procedure (Leygonie et al. 2019)
@ learn optimal coupling (Xie et al. 2019)
This work:
@ no regularization
@ sample-based and scales to high-dimensions
@ ICNN parametrization: built upon (T. & Jalali 2019)
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Main steps:
@ Kantorovich dual formulation:

inf_Ep[f(X)]+Eq[h(Y)]
(F,h)ed,
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i ERLFOOT + EqlF* (V)]
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Consistency of the method

Main result
Consider the min-max formulation

inf — sup  Ep[f(X)] + EQ[(Y,Ve(Y))-f(Ve(Y))]
feCVX(RY)  gecvx(RY)
If @ admits density, then
@ There exists an optimal pair (f, go)
@ Vgo is the OT map from Q to P

proof sketch: Using Fenchel's inequality

(v,ve(y))-f(ve(y)) <f*(y), Vg
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Stability analysis

Proposition

Consider the min-max formulation

inf — sup  Ep[f(X)] + EQ[(Y,Ve(Y))-f(Ve(Y))]
feCVX(R?)  gecvx(RY)

For any (f, g) such that f is a-strongly convex

2
|Vg - Veolfzq) < = (alf,g) + e(f))

error in estimating OT optimization gap

@ ¢ is the optimality gap for max

@ ¢ is the optimality gap for min

proof: Extension of stability result for semi-dual formulation (Hitter &
Rigollet 2019)
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Proposed method

@ Min-max formulation:

inf sup En[f(X)] + Eql(Y,Ve(V)) - F(Ve(Y))]
feCVX(R?)  gecvx(RY)

@ Parametrization with ICNN

inf sup  Ep[f(X)] + EQ[{Y,Ve(Y))-f(Ve(Y))]

fEICNN(Rd) gEICNN(Rd)

@ Solve using stochastic optimization algorithm
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Input Convex Neural Networks (ICNN)

i

(Amos et. al. 2016)

f(x,0) is convex in x if
e W, >0 element-wise
@ oy is convex

@ oy is convex and non-decreasing for /=1,...,L-1

Representation power: (Chen et. al. 2018)
- ICNN can approximate any convex function over a compact domain
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o Targetdistribution e Souce distribution —— Transportmap e Generated dist.
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Proof-of-concept: Learning the OT map

o Example I: Checkerboard

@ Example II: Mixture of Gaussians

o Targetdistribution s Souce distribution —— Transportmap e Generated dist.
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Results on high-dim real data

e MNIST {0,1,2,3,4} to MNIST {5,6,7,8,9} (in VAE latent space)
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Results on high-dim real data

e MNIST {0,1,2,3,4} to MNIST {5,6,7,8,9} (in VAE latent space)
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Thank youl!

’For more information, please visit the poster‘




