
© 2022 Ashok Vardhan Makkuva

DEEP CODE: REPRESENTATION AND LEARNING ALGORITHMS FOR
NEURAL NETWORKS & THEIR APPLICATIONS TO COMMUNICATION

CODES

BY

ASHOK VARDHAN MAKKUVA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Pramod Viswanath, Chair
Professor Bruce Hajek
Professor Rayadurgam Srikant
Assistant Professor Ruoyu Sun
Associate Professor Sewoong Oh

Abstract

Codes are the backbone of modern information age. Codes, composed of
encoder and decoder pairs, are the basic mathematical objects that enable
reliable communication. Landmark codes include convolutional, Reed-Muller,
turbo, LDPC, and polar: each is linear and represents a mathematical
breakthrough. Their impact on humanity is huge; each of these codes has
been used in global communication standards over the past six decades. On
the other hand, designing codes is a challenging task, mostly driven by human
ingenuity. Befittingly, historically, the progress in discovery of codes has been
sporadic.

In this thesis, we present a new paradigm to invent codes via harnessing
tools from deep-learning. Our major result is the invention of KO codes, a
computationally efficient family of deep-learning driven codes that outperform
the state-of-the-art RM and polar codes, in the challenging short-to-medium
block length regime. The key technical innovation behind KO codes is the
design of a novel family of neural architectures inspired by the computation
tree of the Kronecker Operation (KO) central to RM and polar codes. These
architectures pave the way for discovery of a much richer class of hitherto
unexplored non-linear codes. This design technique can be viewed as an
instantiation of the classical neural augmentation principle. In the process, we
also study a popular neural network model called Mixture-of-Experts (MoE)
that realizes this principle. We provide the first set of consistent and efficient
algorithms with global learning guarantees for learning the parameters in a
MoE which has been an open problem for more than two decades.

ii

To my family.

iii

Acknowledgments

I would first like to thank my advisor Prof. Pramod Viswanath for his
constant support and guidance throughout my PhD. Especially, I would like
to thank him for helping me discover and nurture the creative spirit in me. As
I progressed in grad school, thanks to him I began to view research more and
more as a creative endeavour and less as a technical chore. This change in
perspective has had such a huge impact on me and my research. I am greatly
indebted to him for shining this light. His invaluable advice on various aspects
of research – creating a problem statement and traversing the unexplored
rugged research terrain with a torch called “your own co-ordinate system,”
identifying the right set of problems to work on, creating your vision, etc.
– has greatly shaped my thought process and the perspective to view and
understand things.

I have also had the pleasure to work with Prof. Sewoong Oh closely on
a lot of research topics right from the beginning of my PhD. Working with
Sewoong has helped me realize and inculcate many crucial aspects of high
quality research: intuition, rigor, and clarity of thought. His ability to get to
the core of the problem and digest complex ideas through intuition is one thing
that I have always tried to imbibe into myself. Another close collaborator who
has had tremendous influence on me is Prof. Sreeram Kannan. He taught
me so many valuable things regarding becoming a world-class researcher.
His energetic personality, endless curiosity, and being a generating source of
numerous research problems has always been an inspiration to me. I am also
deeply indebted to my amazing mentors from IITB, Prof. Vivek Borkar and
Prof. Sibiraj Pillai, whose guidance and help carved the grad school path for
me.

I would like to thank my doctoral committee members, together with
Sewoong, Profs. Bruce Hajek, Rayadurgam Srikant, and Ruoyu Sun for their
feedback and guidance. I would also like to thank Prof. Venu Veeravalli,

iv

Prof. Pierre Moulin, and Prof. Idoia Ochoa for serving as my qualifying exam
committee. Special thanks to all the faculty whose courses have greatly shaped
my thought process during the grad school: Prof. Richard Laugesen, Prof.
Partha Dey, Prof. Maxim Raginsky, Prof. Zhongjin Ruan, Prof. Sewoong
Oh, Prof. Matus Telgarsky, Prof. Ruoyu Sun, and Prof. Yihong Wu.

My life in Chambana would not have been as much fun and memorable if not
for the amazing company of my friends across the years: Aniruddh, Anurendra,
Anushree, Anirudh Chaudhary, Ishan, Kiran, Ashish, Arun, Tarek, Jason,
Safa, Mohit, Manjunath, Pranjal, Sanket, Vipul, Suraj, Maghav, Moitreya,
Tanmay, Deva, Srilakshmi, and Zeyu. As much as I deeply cherish the fun
filled memorable times I spent with them, I would also like to thank them
for being a source of constant source of inspiration and for providing myriad
perspectives about life. Special thanks to Anand and Vedant, for being a
living reminder that hard work and the right attitude can take you anywhere
in life; Amir, for being a wonderful collaborator and a close friend; Anshika,
for her passion for research and science; Anwesa and Maitreyee, for being an
inspiration with their incredible multifaceted talents; Azin, for providing a lens
to the fascinatingly beautiful Iranian culture, history, and movies; Bhavesh,
for being the resident Michelin chef and the amazing discussions cum banter;
Ranvir, Deva and Jyoti, for their chill attitude and calm demeanor at all
times; Deepika, for introducing a variety of excellent TED talks, articles,
and perspectives about life; Mona, for being an amazing movie compatriot
and for the interesting discussions ranging from tensors to TENET; Hyeji,
Shaileshh and Shripad, for their sagely advice at many crucial moments of
my grad school; Amish, Saboo, Sayantani and Vegnesh, for being a cheerful
presence at all times and for their eclectic interests on a wide range of topics;
Vinay Iyer, for being an early example (right from day one of grad school)
of how to balance life and work; Weihao, for being always there to discuss
about anything from research to sports. I would also like thank my latest
group-mates and co, Milind, Ashwin, Viraj, Anant, and Ushasi for the fun
company and the wonderful collaborations.

Next, I would like to thank my roommates and close friends, Konik and
Sameer, for their amazing camaraderie all these years. I have learnt a lot of
valuable things living with them; Konik, for his fearless attitude in approaching
problems and a clear cut vision, and Sameer, for his straightforward and
gentle approach to various things in life. I would also like to thank the special

v

residents of CSL 104, Harsh and Siddhartha, for always being available to
chat about anything under the sun at any time of the day. Harsh, with his
encyclopedic knowledge about everything and Siddhartha, with his diverse
set of talents ranging from ballroom dancing to improv, have left an indelible
mark on me. Special thanks to Unnat for being an amazing friend and a
constant source of inspiration. I have learnt a great deal just watching him
figure out and follow the paths/strategies to be a world-class researcher. And
a big thank you to Pratik, Surya, and Vaishnavi, for being a constant bedrock
of support across the years. If I begin writing why and what I would like
to thank them for, I am afraid I will run out of space. So I will simply say:
thank you for everything!

A heartfelt thanks to Brenda and Peggy for all the administrative help and
their cheer-radiating presence in CSL!

Outside the UIUC universe, I would like to thank some of my closest friends
from (school, IITB) days who were always there to support me: Vamisdhar,
Tarun, Sasank, Soham, Sukanya, Nithin, Sai Kumar, Sainath, Sai Bhargav,
Vishal, and Srikar sir. I would also like to thank Aditi Udupa for being an
ideal role model, especially at some of the formative years of my life. I am
grateful to Sankeerth and Krishnamoorthy Iyer for their timely help with
grad school applications.

As with everything in life, my grad school experience has been a rollercoaster
ride of emotions. In particular, I went through several health crises in the
form of depression and vitamin deficiencies. In those dark moments, if not
for the timely presence and support of amazing friends and family, I would
not have made it through. A special such thanks to my counselor Emily,
who has literally shined the light in my life when I had no hope left. No
words can express my gratitude to her. Similarly I would like to think Priya
Soundararajan, for being a supportive figure during some of the darkest
phases of depression, and for being a wonderful friend putting up with my
endless curiosity to talk about anything related to maths, history, and movies.
I would also like to thank Vamsi and Ankita without whose presence and
support I wouldn’t have made it through the latter crisis. My deepest heartfelt
thanks to you both!

A special thanks to Pranathi, Murthy, Samanvitha, and Dhruv for making
me feel at home being so far from the home!

Finally, in the tradition of saving the best for the last, I would like to

vi

express deepest gratitude for my parents. I am eternally thankful to them
for their selfless love, sacrifice, support, and encouragement all these years.
Without them, none of this would have been possible. To them, I dedicate
this thesis.

vii

Table of Contents

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Organization of this dissertation 6
1.2 Bibliographical note . 6

Chapter 2 Mixture-of-Experts: Consistent and Efficient
Algorithms . 7
2.1 Background on Mixture-of-Experts (MoE) 7
2.2 Algorithms . 10
2.3 The proposed algorithm for learning MoE 11
2.4 Theoretical analysis . 13
2.5 Experiments . 17

Chapter 3 Mixture-of-Experts: Learning via Gradient Descent 20
3.1 Connection between k-MoE and other popular models 20
3.2 Optimization landscape design for MoE 21
3.3 Experiments . 28

Chapter 4 KO Codes: Novel Neural Codes 31
4.1 Introduction . 31
4.2 Problem formulation and background 35
4.3 KO codes: Novel Neural codes 40
4.4 Main results . 41
4.5 KO codes improve upon Polar codes 48
4.6 Tiny KO . 50

Chapter 5 Conclusion . 52

References . 54

viii

Appendix A Appendix for Chapter 2 61
A.1 Toolbox for method of moments 61
A.2 Class of non-linearities . 63
A.3 Proofs of Section 2.4 . 65
A.4 Proof of Theorem 1 for k = 2 65
A.5 Proof of Theorem 1 for general k 68
A.6 Proof of Theorem 2 . 69
A.7 Proof of Lemma 8 . 70
A.8 Proof of Lemma 7 . 76
A.9 Proof for k = 2 . 76
A.10 Proof for general k . 81
A.11 Gradient EM algorithm . 86
A.12 Additional experiments . 88

Appendix B Appendix for Chapter 3 92
B.1 Valid class of non-linearities 92
B.2 Proofs of Section 3.2.1 . 94
B.3 Proofs of Section 3.2.2 . 97
B.4 Additional experiments . 106

Appendix C Appendix for Chapter 4 107
C.1 Polar(64, 7) code . 107
C.2 Gains with list decoding . 109
C.3 Discussion . 109
C.4 Plotkin construction . 110
C.5 KO(8, 2): Architecture and training 110
C.6 Soft-MAP decoder . 114
C.7 Experimental details . 116
C.8 Results for Order-1 codes . 119

ix

List of Tables

2.1 Fit of our learned parameters for non-Gaussian inputs 19
2.2 Performance of our algorithm under orthogonal and non-

orthogonal settings . 19

4.1 Parameters of a RM(m, r) code 37
4.2 The smaller TinyKO neural architecture with 100 times

smaller number of parameters achieve similar bit-error-rates
as the bigger KO architecture. 50

x

List of Figures

1.1 Model for point-to-point communication. 3
1.2 Neural Augmentation on top of existing optimal codes. 4
1.3 Mixture-of-Experts model. 5

2.1 Architecture for k-MoE . 8
2.2 Algorithm to learn the MoE parameters. Algorithm 1:

First we take non-linear transformations on the samples
(xi, yi) to compute the tensors T2, T3. Spectral decomposi-
tion on T2, T3 recovers the regressors. Algorithm 2: EM
uses the learnt regressors and samples to learn the gating
parameters with random initializations 10

2.3 (a): GatingFit for our algorithm under non-orthogonality
setting. (b),(c): Estimation error E(A,W) of our algorithm
vs. joint-EM algorithm. Our algorithm is significantly
better than the joint-EM under random initializations. 18

3.1 Our proposed losses L4 (defined in Equation 3.2) and Llog

(defined in Equation 3.4) to learn the respective regressor
and gating parameters of a MoE model in Equation 2.1
achieve much better empirical results than the standard
methods. 21

3.2 (a), (b): Robustness to parameter orthogonality: Plots
show performance over 5 different trials for our losses L4

and Llog respectively. (c) Robustness to Gaussianity of
input: Performance over various mixing probabilities p. . . . 28

4.1 KO(9, 2), discovered by training a neural network with a
carefully chosen architecture in Section 4.3, significantly
improves upon state-of-the-art RM(9, 2) both in BER and
BLER. (For both codes, the code block length is 29 = 512
and the number of transmitted message bits is

(
9
0

)
+
(
9
1

)
+(

9
2

)
= 55. Also, both codes are decoded using successive

cancellation decoding with similar decoding complexity) . . . 33

xi

4.2 Histogram of pairwise distances between codewords of the
KO(9, 2) code shows a strong resemblance to that of the
Gaussian codebook, unlike the classical Reed-Muller code
RM(9, 2). 34

4.3 Plotkin trees for RM(3, 1) and KO(3, 1) codes. Leaves are
shown in green. Red arrows indicate the bit decoding order. . 38

4.4 Neural network based KO(8, 2) and KO-b(8, 2) improve
upon RM(8, 2) in BER and BLER, but the gain is small
for the binarized codewords of KO-b(8, 2) (for all the codes,
the code dimension is 37 and block length is 256). 42

4.5 Histograms of pairwise distances between codewords for
(8, 2) codes reveal that KO(8, 2) code has learned an ap-
proximate Gaussian codebook that can be efficiently decoded. 44

4.6 Separating each sub-code contribution in the KO(8, 2) de-
coder and the RM(8, 2) decoder reveals that KO(8, 2) im-
proves in the total BLER by balancing the contributions
more evenly over the sub-codes. 45

4.7 KO(8, 2) trained on AWGN is robust when tested on a fast
fading channel and maintains a significant gain over RM(8,2). 46

4.8 KO(8, 2) trained on AWGN is robust when tested on a
bursty channel and maintains a significant gain over RM(8, 2). 46

4.9 Ablation studies highlight that both non-linearity and real-
valued codewords are equally important for good perfor-
mance of KO codes. The linear version, KO-linear(8, 2),
and the binary version, KO-b(8, 2), both perform worse
than KO(8, 2) and similar to RM(8, 2). 47

4.10 Neural network based KO code improves upon the Polar(64, 7)
code when trained on AWGN channel. KO decoder also
matches the optimal MAP decoder. 49

A.1 Plot of parameter estimation error with varying number of
samples(n): (a) n = 1000 (b) n = 5000. (c) n = 10000. 88

A.2 Parameter estimation error for the sigmoid and ReLU non-
linearities respectively. 89

A.3 Prediction error for the concrete, stock portfolio and the
airfoil data sets respectively. 89

B.1 Comparison of SGD on our losses (L4, Llog) vs. ℓ2 and the
EM algorithm. 106

C.2 KO code achieves a significant gain over the Polar(64, 7)
code in BLER when trained on AWGN channel. KO decoder
also matches the optimal MAP decoder. 108

xii

C.6 KO(6, 1) code. Left: KO(6, 1) code achieves significant
gain over RM(6, 1) code (with Dumer) when trained on
AWGN channel. Right: Under the optimal MAP decoding,
KO(6, 1) and RM(6, 1) codes achieve the same performance.
Error rates for a random Gaussian codebook are also plotted
as a baseline. 120

C.1 Plotkin trees for the Polar(64, 7) encoder and our neural
KO encoder counterpart. Both codes have dimension k = 7
and blocklength n = 64. 121

C.3 The same KO(8,2) encoder and decoder as those used in
Figure 4.4 achieve a significant gain (without any retraining
or fine-tuning) when list decoding is used together with the
KO decoder. The magnitude of the gain is comparable to
the gain achieved by the same list decoding technique on the
successive cancellation decoder of the RM(8,2) code. We
used the list decoding from [1] but without the permutation
technique. 122

C.4 Plotkin trees for RM(8,2) and KO(8,2) encoders. Leaves
are highlighted in green. Both codes have dimension k = 37
and blocklength n = 256. 123

C.5 Plotkin trees for the RM(8, 2) and KO(8, 2) decoders. Red
arrows indicate the bit decoding order. 124

xiii

Chapter 1

Introduction

Undeniably, thanks to modern digital communication, we all live in the age
of information. No matter where we are located, we are able to communicate
and transmit messages at ever increasing speeds. From the age of messenger
pigeons to that of electronic email, how did we reach here? What makes the
modern communication systems so reliable and effective?

Codes, composed of encoder and decoder pairs, are the basic mathematical
objects that enable reliable communication in the presence of noise: encoder
maps original data bits into a longer sequence, and decoders map the received
noisy sequence to the original bits. Through his ground-breaking work
in [2], the birth of information theory, Shannon laid the foundations for
modern digital communication by providing a mathematical lens to study and
understand codes. Ever since, much progress has been made in the design of
optimal codes that can be reliably transmitted and efficiently decoded under
noisy conditions. This is the primary focus of coding theory. Landmark codes
include Reed-Muller (RM) codes, Bose–Chaudhuri–Hocquenghem (BCH)
codes, convolutional codes, turbo codes, low density parity check (LDPC)
codes and polar codes [3]; each is a linear code and represents a mathematical
breakthrough. Their impact on humanity is huge: each of these codes has
been used in global communication standards over the past six decades. Put
more simply, every cellular phone designed ever uses one of these codes.

Given the practical relevance, inventing codes is a major intellectual activity
in both academia and the wireless industry. On the other hand, designing
codes is a challenging task, mostly driven by human ingenuity. Befittingly,
the progress has been sporadic historically. For example, the time duration
between convolutional codes (2nd generation cellular standards) to polar codes
(5th generation cellular standards) is over four decades. The core challenge is
that the space of codes is very vast and the sizes astronomical; for instance a
rate 1/2 code over even 100 information bits involves designing 2100 codewords

1

in a 200 dimensional space. Hence computationally efficient encoding and
decoding procedures are a must, apart from high reliability. Thus, although
a random code is information theoretically optimal, neither encoding nor
decoding is computationally efficient. However, the mathematical landscape
of computationally efficient codes has been plumbed over the decades by
some of the finest mathematical minds, resulting in two distinct families of
codes: algebraic codes (RM, BCH – focused on properties of polynomials) and
graph codes (Turbo, LDPC – based on sparse graphs and statistical physics).
The former is deterministic and involves discrete mathematics, while the
latter harnesses randomness, graphs, and statistical physics to behave like a
pseudorandom code. A major open question in coding theory is the invention
of new codes and especially fascinating would be a family of codes outside of
these two classes.

On the other hand, in recent years we have seen tremendous success of
deep learning (DL) across a variety of disciplines such as computer vision [4],
natural language processing [5], and game playing [6,7]. A key hallmark of
these results is that they have transformed several domains of human endeavor
that have traditionally relied on mathematical ingenuity, e.g., game playing
(AlphaGo, AlphaZero). Especially in the context of game playing, where the
game model and the objective are mathematically well defined, DL has shown
the ability to learn complex algorithms/strategies that outperform humans
purely from data alone. Inspired by these successes, we are thus motivated to
ask:

Question 1. Can we harness the potential of deep learning to address the
long standing goals of coding theory?

Addressing this question is the primary focus of this thesis.
To this end, let’s first recall the mathematical model for point-to-point

communication [2] as illustrated in Figure 1.1: A message m ∈ {1, 2, . . . ,M}
that we wish to transmit is randomly generated. It is further processed by
an encoder which maps the message to a corresponding codeword that is
transmitted across a noisy channel medium. We consider the additive white
Gaussian noise (AWGN) channel; for a variety of theoretical and practical
reasons, AWGN channel is the canonical setting to benchmark codes. Upon
receiving the corrupted codeword, the decoder estimates the message as m̂.
Ideally, we desire m̂ to be the same as m. Thus, the defining criterion for

2

Encoder DecoderMessage 𝑚 ෝ𝑚

Codeword Noisy codeword

Channel

Figure 1.1: Model for point-to-point communication.

any (encoder, decoder) pair is its probability of block error: P (m̂ ̸= m), the
smaller the probability better the reliability of the code. The primary goal
of channel coding is to design codes that achieve state-of-the-art reliability
performance over the AWGN channel.

Recall that the classical optimal codes such as turbo, LDPC, and polar all
have linear encoders and are binary valued. In order to design a much broader
class of non-linear and real valued codes, a natural idea is to appropriately
parameterize the (encoding, decoding) blocks in Figure 1.1 with standard
neural networks (NNs). To train these NNs, we can use an end-to-end cross
entropy loss function which serves as a differentiable surrogate to the error
probability metric. However, this alone does not suffice to learn good codes
that achieve near state-of-the-art results. Indeed, as highlighted in the works
of [8, 9], in the absence of any structure, NNs fail to learn non-trivial codes
and end up performing worse than a simple repetition code (repeating each
message bit multiple times). A fundamental question in machine learning
for channel coding is thus: how do we design architectures for our neural
encoders and decoders that give the appropriate inductive bias?

To this end, we rely on the principle of neural augmentation [10]: cleverly
augment the existing encoders and decoders with their corresponding neural
counter parts. The underlying intuition behind this is quite simple, harness
the best of both worlds: the human engineered codes and their neural versions.
In other words, we capitalize on the existing optimal codes and use them
as an inductive bias to design new neural codes. Hence we can expect that
the codes learnt via this approach are strictly better than their non-neural

3

Existing

Encoder

Input

Output

Input

Neural

Encoder

Figure 1.2: Neural Augmentation on top of existing optimal codes.

counterparts. This abstract schematic is illustrated in Figure 1.2 in the
context of a designing a new encoder (similarly for decoder).

In view of this, it is thus natural to ask what are some canonical models
that realize this abstraction. Indeed, a well-known model called Mixture-of-
Experts (MoE) fits the task. The canonical model for two Mixture-of-Experts
is illustrated in Figure 1.3. Here each of the experts represent a function
block that map the input to its corresponding output. Of significance is
the presence of a gating mechanism which influences how the individual
expert’s decisions are modulated into obtaining a final output. Note that the
gating mechanism is input dependent. Hence the gating automatically learns
when/how to factor in the best expert’s decision. We note that the MoE
model is more general than the neural augmented approach since MoE allows
for learnable components in both the experts and the gating mechanism. Also
MoE is a rich mathematical model in its own right and has received a lot of
theoretical and empirical interest [11–18] ever since its inception more than
two decades ago [19].

However, belying its empirical success, very little is known about the
canonical MoE model with regards to learning its parameters. In Chapter 2,
we study the MoE in great detail and address this gap. We provide the first
efficient and consistent algorithm with global learning guarantees for learning
the paramaters in a MoE which has been an open problem for more than two
decades. Our algorithm uses a novel combination of spectral methods and
the classical EM algorithm which are of independent mathematical interest.

In Chapter 3, we further improve upon these algorithms and present

4

Expert 1

Input

Output

Input

Expert 2

Gating

block

Input

Figure 1.3: Mixture-of-Experts model.

a scalable gradient descent (GD) based approach with an end-to-end loss
function to learn the MoE parameters and provide the first finite sample
guarantees of any kind for MoE. More precisely, we construct two non-trivial
non-convex loss functions to learn the expert and the gating parameters
respectively. Our loss functions possess nice landscape properties such as all
local minima being global and the global minima corresponding to the ground
truth parameters. We further show that gradient descent on our losses can
recover the true parameters with global/random initializations. To the best
of our knowledge, ours is the first GD based approach with finite sample
guarantees to learn the parameters of MoE.

Chapter 4 pivots from the MoE model and focuses on the design of codes
in a data driven manner. Our major result is the invention of KO codes, a
computationally efficient family of deep-learning driven codes that outperform
the state-of-the-art RM and Polar codes, in the challenging short-to-medium
block length regime on the AWGN channel. The key technical innovation
behind KO codes is the design of a novel family of neural architectures
inspired by the computation tree of the Kronecker Operation (KO) that
is central to RM and Polar codes (neural augmentation principle). These
architectures pave way for the discovery of a much richer class of nonlinear
algebraic structures. Surprisingly, despite being heavily structured, KO codes
exhibit random Gaussian like behavior! These results highlight the potential
of DL in inventing a rich family of hitherto unexplored non-linear codes.

Together, our results thus answer the central question of this dissertation,
Question 1, in affirmative.

5

1.1 Organization of this dissertation

This dissertation is broadly in two parts: Chapter 2 and Chapter 3 focus
on the MoE model and provide efficient and provable algorithms to learn
its parameters. Chapter 4 focuses on the paradigm of designing codes in a
data-driven manner using deep learning and details the KO codes. Each of
these two parts can be read independently of one another. All the necessary
preliminaries and the main results are provided within each chapter.

In Chapter 5 we outline some interesting future directions to the topics
covered in this dissertation.

1.2 Bibliographical note

The following is a chapter-wise list of the publications that include the work
presented herein:

Chapter 2

• A. V. Makkuva, S. Oh, S. Kannan, and P. Viswanath, “Breaking the
gridlock in mixture-of-experts: Consistent and efficient algorithms,”
Proceedings of the 36th International Conference on Machine Learning
(ICML) 2019.

Chapter 3

• A. V. Makkuva, S. Oh, S. Kannan, and P. Viswanath, “Learning in gated
neural networks,” Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS) 2020.

Chapter 4

• A. V. Makkuva*, X. Liu*, M. V. Jamali, H. Mahdavifar, S. Oh, and P.
Viswanath, “KO codes: inventing nonlinear encoding and decoding for
reliable wireless communication via deep-learning,” Proceedings of the
38th International Conference on Machine Learning (ICML) 2021.

6

Chapter 2

Mixture-of-Experts: Consistent and
Efficient Algorithms

2.1 Background on Mixture-of-Experts (MoE)

In this section, we study a popular gated neural network architecture known as
Mixture-of-Experts (MoE). MoE is a basic building block of highly successful
modern neural networks like Gated Recurrent Units (GRU) and Attention
networks. A key interesting feature of MoE is the presence of a gating
mechanism that allows for specialization of experts in their respective domains.
MoE allows for the underlying expert models to be simple while allowing
to capture complex non-linear relations between the data. Ever since their
inception more than two decades ago [19], they have been a subject of great
research interest [11–18] across multiple domains such as computer vision,
natural language processing, speech recognition, finance, and forecasting.

The basic MoE model is the following: let x ∈ Rd be the input feature
vector and y ∈ R be the corresponding label. Then the discriminative model
Py|x for the k-mixture of experts (k-MoE) in the regression setting is:

Py|x =
k∑

i=1

Pi|xPy|x,i

=
k∑

i=1

e⟨w
∗
i ,x⟩∑

j e
⟨w∗

j ,x⟩
N (y|g(⟨a∗

i ,x⟩), σ2). (2.1)

Figure 2.1 details the architecture for k-MoE.
The interpretation behind Equation 2.1 is that for each input x, the gating

network chooses an expert based on the outcome of a multinomial random
variable z ∈ [k], whose probability depends on x in a parametric way, i.e.
z|x ∼ softmax(⟨w∗

1,x⟩, . . . , ⟨w∗
k,x⟩). The chosen expert then generates the

output y from a Gaussian distribution centred at a non-linear activation of

7

g(⟨a∗
1 ,x⟩)Expert 1 . . . g(⟨a∗

k,x⟩) Expert k

xx

y
Softmax

Gating network

x

Figure 2.1: Architecture for k-MoE

x, i.e. g(⟨a∗
z,x⟩), with variance σ2. We want to learn the expert parameters

a∗
i ∈ Rd (also referred to as the regressors) and the gating parameters w∗

i ∈ Rd,
assuming we know the non-linear activation g : R→ R.

This problem of learning MoE has been a long standing open problem
for more than two decades, even though it is a fundamental building block
of several state-of-the-art gated neural network architectures. Gated neural
networks such as GRUs and Sparsely-gated-MoEs have been widely successful
in challenging tasks like machine translation [20–22]. Parameters are typically
learnt through (stochastic) gradient descent on a non-convex loss function.
However, these methods do not possess any theoretical guarantees, even for
the simplest gated neural network, the MoE.

On the other hand, existing guarantees for simpler models without gating
units do not extend to MoEs. Consider the mixture of generalized linear
models (M-GLMs) [23–26], a strict simplification of the k-MoE model in
Equation 2.1, where w∗

i = 0 for all i ∈ {1, . . . , k}. The learning in M-GLMs is
usually done through a combination of spectral methods and greedy methods
such as EM. A major limitation of these methods is that they rely critically
on the fact that the mixing probability is a constant and hence they do not
generalize to MoEs (see Section 2.2). In addition, the EM algorithm, the
workhorse for learning in parametric mixture models, is prone to bad local
minima [23, 26, 27] (we independently verify this for MoEs in Section 2.5).
These theoretical shortcomings and practical relevance of the MoE models
lead to the following fundamental question:

Can we find an efficient and a consistent algorithm (with global initial-
izations) that recovers the true parameters of the model with theoretical
guarantees?

In this chapter, we address this question precisely and make the following
contributions:

8

1) First theoretical guarantees: We provide the first (poly-time) efficient
algorithm that recovers the true parameters of a MoE model with global
initializations (Theorem 1 and Theorem 2). We allow for a wide class of
non-linearities which includes the popular choices of identity, sigmoid, and
ReLU. To the best of our knowledge, ours is the first work to give global
convergence guarantees for MoE.

2) Algorithmic innovations: Existing algorithms jointly or iteratively
estimate the expert parameters and the gating paramters in the MoE and
can get stuck in local minima. In this section, we propose a novel algorithm
that breaks the gridlock and can directly estimate the expert parameters
by sensing its echo in a cross-moment tensor between the inputs and the
output (Algorithm 1 and Algorithm 2). Once the experts are known, the
recovery of gating parameters still requires an EM algorithm; however, we
show that the EM algorithm for this simplified problem, unlike the joint EM
algorithm, converges to the true parameters. The proofs of global convergence
of EM as well as the design of the cross-moment tensor are of independent
mathematical interest.

3) Novel transformations: In this section, we introduce the novel
notion of “Cubic and Quadratic Transform (CQT)". These are polynomial
transformations on the output labels tailored to specific non-linear activation
functions and the noise variance. The key utility of these transforms is to
equip MoEs with a supersymmetric tensor structure in a principled way
(Theorem 1).

Notation. In this section, we denote Euclidean vectors by bold face
lowercase letters a, b, etc., and scalars by plain lowercase letters y, z, etc. We
use N (y|µ, σ2) either to denote the density or the distribution of a Gaussian
random variable y with mean µ and variance σ2, depending on the context.
[d] ≜ {1, . . . , d}. Perm[d] denotes the set of all permutations on [d]. We use
⊗ to denote the tensor outer product of vectors in Rd. x⊗3 denotes x⊗x⊗x,
where (x ⊗ x ⊗ x)ijk = xixjxk. sym(x ⊗ y ⊗ z) denotes the symmetrized
version of x ⊗ y ⊗ z, i.e. sym(x ⊗ y ⊗ z)ijk =

∑
σ∈Perm[d] xσ(i)yσ(j)zσ(k).

ei, i ∈ [d] denotes the standard basis vectors for Rd. Through out, we assume
that w∗

k = 0, without loss of generality.

9

Tensor
decomposition Regr. {â1, . . . , âk}

EM
algorithm Gating param. {ŵ1, . . . , ŵk−1}

Cubic & Quadratic
Transform

Score function

Samples

x

Algorithm 1

Algorithm 2

y

Figure 2.2: Algorithm to learn the MoE parameters. Algorithm 1: First we
take non-linear transformations on the samples (xi, yi) to compute the
tensors T2, T3. Spectral decomposition on T2, T3 recovers the regressors.
Algorithm 2: EM uses the learnt regressors and samples to learn the gating
parameters with random initializations

2.2 Algorithms

In this section, we present our algorithms to learn the regression and gating
parameters separately. Figure 2.2 summarizes our algorithm. First we take a
moment to highlight the issues of the existing approaches.

For illustration purposes, we suppose that k = 2 in Equation 2.1. We
assume without loss of generality that w∗

k = w∗
2 = 0 and denote w∗

1 = w∗.
Thus the 2-MoE model is given by Py|x:

e⟨w
∗,x⟩N (y|g(⟨a∗

1,x⟩), σ2)

1 + e⟨w∗,x⟩ +
N (y|g(⟨a∗

2,x⟩), σ2)

1 + e⟨w∗,x⟩ (2.2)

Issues with traditional tensor methods. In the far simplified setting
of the absence of the gating parameter, i.e. w∗ = 0 ∈ Rd, we see that 2-MoE
reduces to 2-uniform mixture of GLMs. In this case, for x ∼ N (0, Id), the
standard approach is to construct a 3rd-order tensor T by regressing the output
y on the score transformation S3(x) ≜ x⊗ x⊗ x−

∑
i∈[d] sym (x⊗ ei ⊗ ei),

i.e.

T ≜ E[y · S3(x)] =
1

2
E[g′′′(⟨a∗

1,x⟩)] · (a∗
1)

⊗3

+
1

2
E[g′′′(⟨a∗

2,x⟩)] · (a∗
2)

⊗3 . (2.3)

Here the second equality follows from the generalized Stein’s lemma that

10

E[f(x)·S3(x)] = E[∇(3)
x f(x)] under some regularity conditions on f : Rd 7→ R.

Then the regressors can be learned through spectral decomposition on T ,
where the uniqueness of decomposition follows from [28]. If we apply a similar
technique for 2-MoE in Equation 2.2, we obtain that

E[y · S3(x)] =
∑
i=1,2

αi(a
∗
i)

⊗3 + βi sym(a∗
i ⊗ a∗

i ⊗w∗)

+ γi sym(a∗
i ⊗w∗ ⊗w∗) + δ(w∗)⊗3, (2.4)

where αi, βi, γi, δ are some scalar constants depending on the parameters
a∗
1,a

∗
2,w

∗ and g. Thus Equation 2.4 reveals that traditional spectral methods
do not yield a supersymmetric tensor of the desired parameters for MoEs. In
fact, Equation 2.4 contains all the 3rd-order rank-1 terms formed by a∗

1,a
∗
2

and w∗. Hence we cannot recover these parameters uniquely. Note that the
inherent coupling between the regressors a∗

1,a
∗
2 and the gating parameter w∗

in Equation 2.2 manifests as a cross tensor in Equation 2.4. This coupling
serves as a key limitation for the traditional methods which critically rely on
the fact that the mixing probability p = 1

2
in Equation 2.4 is a constant. In

fact, we recover Equation 2.3 by letting w∗ = 0 in Equation 2.4.
Issues with EM algorithm. EM algorithm is the workhorse for parameter

learning in both the k-MoE and HME models [29]. However, it is well known
that EM is prone to spurious minima and existing theoretical results only
establish local convergence for the regressors and the gating parameters.
Indeed, our numerical experiments in Section 2.5.3 verify this fact. Figure 2.3b
and Figure 2.3c highlight that joint-EM often gets stuck in bad local minima.

2.3 The proposed algorithm for learning MoE

In order to tackle these challenges, we take a different route and propose to
estimate the regressors and gating parameters separately. To gain intuition
about our approach, let us consider 2-MoE model in Equation 2.2 with σ = 0

and linear g. Then we have that y either equals ⟨a∗
1,x⟩ with probability

σ(⟨w∗,x⟩) or equals ⟨a∗
2,x⟩ with probability 1 − σ(⟨w∗,x⟩), where σ(·) is

the sigmoid function. If we exactly know w∗, we can recover a∗
1 and a∗

2 by
solving a simple linear regression problem since we can recover the true latent

11

variable z ∈ {1, 2} with high probability. Similarly, if we know a∗
1 and a∗

2, it
is easy to see that we can recover w∗ by solving a binary linear classification
problem. Thus knowing either the regressors or the gating parameters makes
the estimation of other parameters easier. However, how do we first obtain
one set of parameters without any knowledge about the other?

Our approach precisely addresses this question and breaks the grid lock.
We show that we can extract the regressors a∗

1 and a∗
2 without knowing w∗

at all, just using the samples. Although we explain our approach with two
mixtures, all claims are made precise for general k in Theorems 1 and 2, and
the algorithms are written for general k as well in Algorithms 1 and 2.

Step 1: Estimation of regressors

To learn the regressors, we first pre-process x ∼ N (0, Id) using the score
transformations S3 and S2, i.e.

S3(x) ≜ x⊗ x⊗ x−
∑
i∈[d]

sym (x⊗ ei ⊗ ei) , (2.5)

S2(x) ≜ x⊗ x− I. (2.6)

These score functions can be viewed as higher-order feature extractors from
the inputs. As we have seen in Equation 2.3, these transformations suffice
to learn the parameters in M-GLMs. However this approach fails in the
context of MoE, as highlighted in Equation 2.4. Can we still construct a
supersymmetric tensor for MoE?

To answer this question in a principled way, we introduce the notion of
“Cubic and Quadratic Transform (CQT)" for the labels, i.e.

P3(y) ≜ y3 + αy2 + βy, P2(y) ≜ y2 + γy.

The coefficients (α, β, γ) in these polynomial transforms are obtained by
solving a linear system of equations. For the special case of g =linear, we
obtain P3(y) = y3−3(1+σ2) y and P2(y) = y2. These special transformations
are specific to the choice of non-linearity g and the noise variance σ. The key
intuition behind the design of these transforms is that we can nullify the cross
moments and obtain supersymmetric tensor in Equation 2.3 if we regress

12

P3(y) instead of y, for properly chosen constants α and β. This is made
mathematically precise in Theorem 1. A similar argument holds for P2(y) too.
In addition, the choice of these polynomials is unique in the sense that any
other polynomial transformations fail to yield the desired tensor structure.
Using these transforms, we construct two special tensors T̂3 ∈ (Rd)⊗3 and
T̂2 ∈ (Rd)⊗2. Later we use the robust tensor power method [30] on these
tensors to learn the regressors. Algorithm 1 details our learning procedure.
Theorem 1 establishes the theoretical justification for our algorithm.

Algorithm 1 Learning the regressors
1: Input: Samples (xi, yi), i ∈ [n]
2: Compute T̂3 = 1

n

∑n
i=1P3(yi) · S3(xi) and T̂2 = 1

n

∑n
i=1P2(yi) · S2(xi)

3: â1, . . . , âk = Rank-k tensor decomposition on T̂3 using T̂2

Step 2: Estimation of gating parameters

To gain intuition for estimating the gating parameters, recall that the tradi-
tional joint-EM algorithm randomly initializes both the regressors and the
gating parameters and updates them iteratively. Figure 2.3b and Figure 2.3c
highlight that this procedure is prone to spurious minima. Can we still learn
the gating parameters with global initializations? To address this question,
we utilize the regressors learnt from Algorithm 1. In particular, we use EM
algorithm to update only the gating parameters, while fixing the regressors
â1, . . . , âk. We show in Theorem 2 that, with global/random initializations,
this variant of EM algorithm learns the true parameters. To the best of our
knowledge, this is the first global convergence result for EM for k > 2 mixtures.
This motivates the following algorithm (ε > 0 is some error tolerance):

2.4 Theoretical analysis

In this section, we provide the theoretical guarantees for our algorithms in
the population setting. We first formally state our assumptions and justify
the rationale behind them:

1. x follows standard Gaussian distribution, i.e. x ∼ N (0, Id).

13

Algorithm 2 Learning the gating parameter
1: Input: Samples (xi, yi), i ∈ [n] and regressors â1, . . . , âk from Algo-

rithm 1
2: t← 0
3: Initialize w0 uniformly randomly in its domain Ω
4: while (Estimation error < ε) do
5: Compute the posterior p(i)wt according to Equation 2.8 for each j ∈ [k]

and i ∈ [n]
6: Compute Q(w|wt) according to Equation 2.7 using empirical expec-

tation
7: Set wt+1 = argmaxw∈ΩQ(w|wt)
8: t← t+ 1
9: Estimation error = ∥wt −wt−1∥

10: end while

2. ∥a∗
i ∥2 = 1 for i ∈ [k] and ∥w∗

i ∥2 ≤ R for i ∈ [k − 1], with some R > 0.

3. a∗
i , i ∈ [k] are linearly independent and w∗

i is orthogonal to span{a∗
1, . . . ,a

∗
k}

for i ∈ [k − 1].

4. The non-linearity g : R→ R is (α, β, γ)-valid. For example, this class
includes g =linear, sigmoid and ReLU.

Remark. We note that the Gaussianity of the input distribution and
norm constraints on the parameters are standard assumptions in the learning
of neural networks literature [31–36] and also that of M-GLMs [23, 25–27].
An interpretation behind Assumption 3 is that if we think of x as a high-
dimensional feature vector, distinct sub-features of x are used to perform the
two distinct tasks of classification (using w∗

i ’s) and regression (using a∗
i ’s).

We note that we need the above assumptions only for the technical analysis.
In Section 2.5.1 and Section 2.5.2, we empirically verify that our algorithms
work well in practice even under the relaxation of these assumptions. Thus
we believe that the assumptions are merely technical artifacts.

We are now ready to state our results.

Theorem 1 (Recovery of regression parameters). Let (x, y) be generated
according the true model Equation 2.1. Under the above assumptions, we have

14

that

T2 ≜ E[P2(y) · S2(x)] =
k∑

i=1

c′gE[Pi|x] · a∗
i ⊗ a∗

i ,

T3 ≜ E[P3(y) · S3(x)] =
k∑

i=1

cg,σE[Pi|x] · a∗
i ⊗ a∗

i ⊗ a∗
i ,

where c′g and cg,σ are two non-zero constants depending on g and σ. Hence
the regressors a∗

i ’s can be learnt through tensor decomposition on T2 and T3.

Once we obtain T2 and T3, the recovery gurantees for the regressors a∗
i follow

from the standard tensor decomposition guarantees, for example, Theorem
4.3 and Theorem 5 of [30]. We assume that the learnt regressors ai are such
that maxi∈[k] ∥ai−a∗

i ∥2 = σ2ε for some ε > 0. Now we present our theoretical
results for global convergence of EM. First we briefly recall the algorithm.
Let Ω denote the domain of our gating parameters, defined as

Ω = {w = (w1, . . . ,wk−1) : ∥wi∥2 ≤ R, ∀i ∈ [k − 1]} .

Then the population EM for the mixture of experts consists of the following
two steps:

• E-step: Using the current estimate wt to compute the function Q(·|wt),

• M-step: wt+1 = argmaxw∈ΩQ(w|wt),

where the function Q(.|wt) is the expected log-likelihood of the complete data
distribution with respect to current posterior distribution. Mathematically,

Q(w|wt) ≜ E(x,y)EPz|x,y,wt
[logPw(x, z, y)]

= E(x,y)EPz|x,y,wt
[logP (x)Pw(z|x)P (y|x, z)]

= E(x,y)EPz|x,y,wt
[logPw(z|x)] + const.

= E[
∑

i∈[k−1]

p(i)wt
(w⊤

i x)− (1 +
∑

i∈[k−1]

ew
⊤
i x)]

+ const. (2.7)

where const refers to terms not depending on w, Pw(z = i|x) = exp(w⊤
i x)/

∑
j exp(w

⊤
j x)

and p
(i)
wt ≜ P (z = i|x, y,wt) corresponds to the posterior probability for the

15

ith expert, given by

p(i)wt
=

pi,t(x)N (y|g(a⊤
i x), σ

2)∑
j∈[k] pj,t(x)N (y|g(a⊤

j x), σ
2)
, (2.8)

pi,t(x) =
e(wt)⊤i x

1 +
∑

j∈[k−1] e
(wt)⊤j x

.

In Equation 2.7, the expectation is with respect to the true distribution of
(x, y), given by Equation 2.1. Thus the EM can be viewed as a deterministic
procedure which maps wt 7→M(wt) where

M(w) = argmaxw′∈ΩQ(w′|w).

When the estimated regressors ai equal the true parameters a∗
i , it follows

from the self-consistency property of the EM that the true parameter w∗ is
a fixed-point for the EM operator M , i.e. M(w∗) = w∗ [37]. However, this
does not guarantee that EM converges to w∗. In the following theorem, we
show that even when the regressors are known approximately, EM algorithm
converges to the true gating parameters at a geometric rate upto an additive
error, under global initializations. For the error metric, we define ∥w−w′∥ ≜
maxi∈[k−1] ∥wi−w′

i∥2 for any w,w′ ∈ Ω. We assume that R = 1 for simplicity.
(Our results extend straightforwardly to general R).

Theorem 2. Let ε > 0 be such that maxi ∥ai − a∗
i ∥2 = σ2ε. There exists a

constant σ0 > 0 such that whenever 0 < σ < σ0, for any random initialization
w0 ∈ Ω, the population-level EM updates on the gating parameter {w}t≥0

converge almost geometrically to the true parameter w∗ upto an additive error,
i.e.

∥wt −w∗∥ ≤ (κσ)
t ∥w0 −w∗∥+ κε

t−1∑
i=0

κi
σ,

where κσ, κ are dimension-independent constant depending on g and σ such

that κσ
σ→0−−→ 0 and κ ≤ (k − 1)

√
6(2+σ2)

2
for g =linear, sigmoid and ReLU.

Remark. In the M-step of the EM algorithm, the next iterate is chosen so
that the function Q(·|wt) is maximized. Instead we can perform an ascent
step in the direction of the gradient of Q(·|wt) to produce the next iterate,
i.e. wt+1 = ΠΩ(wt + α∇Q(wt|wt)), where ΠΩ(·) is the projection operator.

16

This variant of EM algorithm is known as Gradient EM which also enjoys
similar convergence guarantees.

2.5 Experiments

In this section, we empirically validate our algorithm in various settings and
compare its performance to that of EM on both synthetic and real world
datasets 1. In both the scenarios, we found that our algorithm consistently
outperforms the existing approaches. For the tensor decomposition in our
Algorithm 1, we use the Orth-ALS package by [38]. In all the synthetic
experiments, we first draw the regressors {a∗

i }ki=1 i.i.d uniformly from the
unit sphere Sd−1. The input distribution Px and the generation of w∗

i ’s are
detailed for each experiment. Then the labels yi are generated according to
the true k-MoE model in Equation 2.1 for linear activation.

2.5.1 Non-gaussian inputs

In this section we let the input distribution to be mixtures of Gaussians
(GMM). We let k = 2, d = 10 and σ = 0.1. The gating parameter w∗ ∈
R10 is uniformly chosen from the unit sphere S9. To generate the input
features, we first randomly draw µ1, µ2 ∈ S9, and generate n i.i.d. samples
xi ∼ pN (µ1, Id) + (1 − p)N (µ2, Id), where p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Here
n = 2000. Since x is a 2-GMM, its score functions S3(x),S2(x) are computed
using the densities of Gaussian mixtures [39]. To gauge the performance of
our algorithm, we measure the correlation of our learned parameters a1,a2

and w with the ground truth, i.e.

Regressor Fit(a1,a2) = max
π

min
i∈{1,2}

|⟨aπ(i),a
∗
i ⟩|, (2.9)

where π : {1, 2} → {1, 2} is a permutation. Similarly, for the gating parameter,
we define

Gating Fit(w) = |⟨w,w∗⟩|. (2.10)

1Codes are available at this repository https://github.com/Ashokvardhan/
Breaking-the-gridlock-in-MoE-Consistent-and-Efficient-AlgorithmsMoE codes.

17

https://github.com/Ashokvardhan/Breaking-the-gridlock-in-MoE-Consistent-and-Efficient-Algorithms
https://github.com/Ashokvardhan/Breaking-the-gridlock-in-MoE-Consistent-and-Efficient-Algorithms

(a) Non-orthogonality

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(b) k = 3

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

3

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(c) k = 4

Figure 2.3: (a): GatingFit for our algorithm under non-orthogonality setting.
(b),(c): Estimation error E(A,W) of our algorithm vs. joint-EM algorithm.
Our algorithm is significantly better than the joint-EM under random
initializations.

Here we assume that all the parameters are unit-normalized. The closer the
values of fit are to one, the closer the learnt parameters are to the ground
truth. As shown in Table 2.1, our algorithms are able to learn the ground
truth very accurately in a variety of settings, as indicated by the measured
fit. This highlights the fact that our algorithms are robust to the input
distributions.

2.5.2 Non-orthogonal parameters

In this section we verify that our algorithms still work well in practice even
under the relaxation of Assumption 3. For the experiments, we consider the
similar setting as before with k = 2, d = 10, σ = 0.1 and the gating parameter
w∗ is drawn uniformly from S9 without the orthogonality restriction. We
let xi

i.i.d.∼ N (0, Id). We choose n = 2000. We use RegressorFit and GatingFit

defined in Equation 2.9 and Equation 2.10 respectively, as our performance
metrics. From Table 2.2, we can see that the performance of our algorithms
is almost the same across both the settings. In both the scenarios, our fit is
consistently greater than 0.9.

In Figure 2.3a, we plotted GatingFit(wt) vs. the number of iterations t,
as wt is updated according to Algorithm 2, over 10 independent trials. We
observe that the learned parameters converge to the true parameters in less
than five iterations.

18

Table 2.1: Fit of our learned parameters for non-Gaussian inputs

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9
Regressor Fit 0.93± 0.06 0.94± 0.02 0.92± 0.04 0.92± 0.02 0.91± 0.06
Gating Fit 0.9± 0.1 0.97± 0.01 0.93± 0.04 0.96± 0.03 0.97± 0.01

Table 2.2: Performance of our algorithm under orthogonal and
non-orthogonal settings

Regressor Fit Gating Fit
Non-orthogonal 0.9± 0.08 0.96± 0.02

Orthogonal 0.93± 0.03 0.96± 0.03

2.5.3 Comparison to joint-EM

Here we compare the performance of our algorithm with that of the joint-EM.
We let the number of mixture components be k = 3 and k = 4. We let
x ∼ N (0, Id) and the gating parameters are drawn uniformly from S9. If
A = [a1 . . .ak] and W = [w1 . . .wk−1 0] denote the estimated expert and
gating parameters respectively, our evaluation metric is E , the Frobenious
norm of the parameter error accounting for the best possible permutation
π : [k] → [k], i.e. E(A,W) = infπ ∥A − A∗

π∥F + ∥W −W ∗
π∥F , where

A∗
π = [a∗

π(1) . . .a
∗
π(k)] denotes the permuted regression parameter matrix and

similarly for W ∗
π. In Figure 2.3b and Figure 2.3c, we compare the performance

of our algorithm with the joint-EM algorithm for n = 8000, d = 10, σ = 0.5.
The plotted estimation error E(A,W) is averaged for 10 trials. It is clear that
our algorithm is able to recover the true parameters thus resulting in much
smaller parameter error than the joint-EM which often gets stuck in local
optima. In addition, our algorithm is able to learn these parameters in very
few iterations, often less than 10 iterations. We also find that our algorithm
consistently outperforms the joint-EM for different choices of non-linearities,
number of samples, number of mixtures, etc. Note that the above error metric
E(A,W) is close to zero if and only if Regressor Fit and Gating Fit is close to
one.

19

Chapter 3

Mixture-of-Experts: Learning via
Gradient Descent

3.1 Connection between k-MoE and other popular
models

In the previous section, we have seen how to learn the MoE parameters in a
consistent way using a combination of spectral methods and the EM algorithm.
However, a major drawback is that this approach requires specially crafted
algorithms for learning each of these two sets of parameters. In addition,
this lacks finite sample guarantees. Since SGD and its variants remain the
de facto algorithms for training neural networks because of their practical
advantages, and inspired by the successes of these gradient-descent based
algorithms in finding global minima in a variety of non-convex problems, we
ask the following question:

Question 2. How do we design objective functions amenable to efficient
optimization techniques, such as SGD, with provable learning guarantees for
MoE?

In this section, we address this question in a principled manner and propose
two non-trivial non-convex loss functions L4(·) and Llog(·) to learn the regres-
sors and the gating parameters respectively. In particular, our loss functions
possess nice landscape properties such as local minima being global and the
global minima corresponding to the ground truth parameters. We also show
that gradient descent on our losses can recover the true parameters with
global/random initializations. To the best of our knowledge, ours is the first
GD based approach with finite sample guarantees to learn the parameters of
MoE. We summarize our main contributions below:

• Optimization landscape design with desirable properties: We
design two non-trivial loss functions L4(·) and Llog(·) to learn the

20

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
gr

es
so

r e
rro

r:


re
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our L4(⋅)

(a) Regressor error

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

0.0

0.2

0.4

0.6

0.8

Ga
tin

g
er

ro
r:


ga

tin
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our Llog(⋅)

(b) Gating error

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

0.0

0.2

0.4

0.6

0.8

Re
gr

es
so

r e
rro

r:


re
g

(c) L4(·) over different
initializations

Figure 3.1: Our proposed losses L4 (defined in Equation 3.2) and Llog

(defined in Equation 3.4) to learn the respective regressor and gating
parameters of a MoE model in Equation 2.1 achieve much better empirical
results than the standard methods.

regressors and the gating parameters of a MoE separately. We show
that our loss functions have nice landscape properties and are amenable
to simple local-search algorithms. In particular, we show that SGD on
our novel loss functions recovers the parameters with global/random
initializations.

• First sample complexity results: We also provide the first sample
complexity results for MoE. We show that our algorithms can recover
the true parameters with accuracy ε and with high probability, when
provided with samples polynomial in the dimension d and 1/ε.

Overview. The rest of this section is organized as follows: In Section 3.2
we design two novel loss functions to learn the respective regressors and gating
parameters of a MoE and present our theoretical guarantees. In Section 3.3,
we empirically validate that our proposed losses perform much better than
the current approaches on a variety of settings.

3.2 Optimization landscape design for MoE

In this section, we focus on the learnability of the MoE model and design
two novel loss functions for learning the regressors and the gating parameters
separately.

21

3.2.1 Loss function for regressors: L4

To motivate the need for loss function design in a MoE, first we take a moment
to highlight the issues with the traditional approach of using the mean square
loss ℓ2. If (x, y) are generated according to the ground-truth MoE model
in Equation 2.1, ℓ2(·) computes the quadratic cost between the expected
predictions ŷ and the ground-truth y, i.e.

ℓ2({ai}, {wi}) = E(x,y)∥ŷ(x)− y∥2,

where ŷ(x) =
∑

i softmaxi(w
⊤
1 x, . . . , w

⊤
k−1x, 0) g(a⊤

i x) is the predicted out-
put, and {ai}, {wi} denote the respective regressors and gating parameters.
It is well-known that this mean square loss is prone to bad local minima
as demonstrated empirically in the earliest work of [19] (we verify this in
Section 3.3 too), which also emphasized the importance of the right objective
function to learn the parameters. Note that the bad landscape of ℓ2 is not
just unique to MoE but also widely observed in the context of training neural
network parameters [40]. In the one-hidden-layer NN setting, some recent
works [41, 42] addressed this issue by designing new loss functions with good
landscape properties so that standard algorithms like SGD can provably learn
the parameters. However these methods do not generalize to the MoE setting
since they crucially rely on the fact that the coefficients zi appearing in front
of the activation terms g(⟨a∗i , x⟩) in Equation 2.1, which correspond to the
linear layer weights in NN, are constant. Such an assumption does not hold
in the context of MoEs because the gating probabilities depend on x in a
parametric way through the softmax function and hence introducing the
coupling between w∗

i and a∗i (a similar observation was noted in [43] in the
context of spectral methods).

In order to address the aforementioned issues, inspired by the works of [41]
and [42], we design a novel loss function L4(·) to learn the regressors first.
Our loss function depends on two distinct special transformations on both
the input x ∈ Rd and the output y ∈ R. For the output, we consider the
following transformations:

Q4(y) ≜ y4 + αy3 + βy2 + γy, Q2(y) ≜ y2 + δy, (3.1)

where the set of coefficients (α, β, γ, δ) are dependent on the choice of non-

22

linearity g and noise variance σ2. These are obtained by solving a simple
linear system. For the special case g = Id, which corresponds to linear
activations, the Quartic transform is Q4(y) = y4− 6y2(1+σ2)+3+3σ4− 6σ2

and the Quadratic transform is Q2(y) = y2 − (1 + σ2). For the input x, we
assume that x ∼ N (0, Id), and for any two fixed u, v ∈ Rd, we consider the
projections of multivariate-Hermite polynomials [39,44,45] along these two
vectors, i.e.

t3(u,x) =
(u⊤x)2 − ∥u∥2

c′g,σ
,

t2(u,x) =
(u⊤x)4 − 6∥u∥2(u⊤x)2 + 3∥u∥4

cg,σ
,

t1(u,v,x) = ((u⊤x)2(v⊤x)2 − ∥u∥2(v⊤x)2

− 4(u⊤x)(v⊤x)(u⊤v)− ∥v∥2(u⊤x)2

+ ∥u∥2∥v∥2 + 2(u⊤v)2)/cg,σ,

where cg,σ and c′g,σ are two non-zero constants depending on g and σ. These
transformations (t1, t2, t3) on the input x and (Q4,Q2) on the output y can be
viewed as extractors of higher order information from the data. The utility of
these transformations is concretized in Theorem 3 through the loss function
defined below. Denoting the set of our regression parameters by the matrix
A⊤ = [a1|a2| . . . |ak] ∈ Rd×k, we now define our objective function L4(A) as

L4(A)

≜
∑
i,j∈[k]
i ̸=j

E[Q4(y)t1(ai,aj,x)]− µ
∑
i∈[k]

E[Q4(y)t2(ai,x)]

+ λ
∑
i∈[k]

(E[Q2(y)t3(ai,x)]− 1)2 +
δ

2
∥A∥2F , (3.2)

where µ, λ, δ > 0 are some positive regularization constants. Notice that
L4 is defined as an expectation of terms involving the data transformations:
Q4,Q2, t1, t2, and t3. Hence its gradients can be readily computed from finite
samples and is amenable to standard optimization methods such as SGD for
learning the parameters. Moreover, the following theorem highlights that the
landscape of L4 does not have any spurious local minima.

Theorem 3 (Landscape analysis for learning regressors). Under the mild

23

technical assumptions of [43], the loss function L4 does not have any spurious
local minima. More concretely, let ε > 0 be a given error tolerance. Then we
can choose the regularization constants µ, λ and the parameters ε, τ such that
if A satisfies

∥∇L4(A)∥2 ≤ ε, ∇2L4(A) ≽ −τ/2,

then (A†)⊤ = PDΓA∗ +E, where D is a diagonal matrix with entries close
to 1, Γ is a diagonal matrix with Γii =

√
E[p∗i (x)], P is a permutation matrix

and ∥E∥ ≤ ε0. Hence every approximate local minimum is ε-close to the
global minimum.

Intuitions behind the theorem and the special transforms: While
the transformations and the loss L4 defined above may appear non-intuitive at
first, the key observation is that L4 can be viewed as a fourth-order polynomial
loss in the parameter space, i.e.

L4(A)

=
∑
m∈[k]

E[p∗m(x)]
∑
i ̸=j

i,j∈[k]

⟨a∗
m,ai⟩2⟨a∗

m,aj⟩2

− µ
∑

m,i∈[k]

E[p∗m(x)]⟨a∗
m,ai⟩4 (3.3)

+ λ
∑
i∈[k]

(
∑
m∈[k]

E[p∗m(x)]⟨a∗
m,ai⟩2 − 1)2 +

δ

2
∥A∥2F ,

where p∗i refers to the softmax probability for the ith label with true gating
parameters, i.e. p∗i (x) = softmaxi(⟨w∗

1, x⟩, . . . , ⟨w∗
k−1, x⟩, 0). This alternate

characterization of L4(·) in Equation 3.3 is the crucial step towards proving
Theorem 3. Hence these specially designed transformations on the data (x, y)

help us to achieve this objective. Given this viewpoint, we utilize tools from
[41] where a similar loss involving fourth-order polynomials were analyzed in
the context of 1-layer ReLU network to prove the desired landscape properties
for L4. The full details behind the proof are provided in Appendix B.2.
Moreover, in Section 3.3 we empirically verify that the technical assumptions
are only needed for the theoretical results and that our algorithms are robust
to these assumptions and work equally well even when we relax them.

In the finite sample regime, we replace the population expectations in

24

Equation 3.2 with sample average to obtain the empirical loss L̂. The following
theorem establishes that L̂ too inherits the same landscape properties of L
when provided enough samples.

Theorem 4 (Finite sample landscape). There exists a polynomial poly(d, 1/ε)
such that whenever n ≥ poly(d, 1/ε), L̂ inherits the same landscape properties
as that of L established in Theorem 3 with high probability. Hence stochastic
gradient descent on L̂ converges to an approximate local minima which is also
close to a global minimum in time polynomial in d, 1/ε.

Remark 1. Notice that the parameters {ai} learnt through SGD are some
permutation of the true parameters a∗

i upto sign flips. This sign ambiguity
can be resolved using existing standard procedures such as Algorithm 1 in [41].
In the remainder of the paper, we assume that we know the regressors upto
some error εreg > 0 in the following sense: maxi∈[k] ∥ai − a∗i ∥ = σ2εreg.

3.2.2 Loss function for gating parameters: Llog

In the previous section, we have established that we can learn the regressors
a∗
i upto small error using SGD on the loss function L4. Now we are interested

in answering the following question: Can we design a loss function amenable
to efficient optimization algorithms such as SGD with recoverable guarantees
to learn the gating parameters?

In order to gain some intuition towards addressing this question, consider
the simplified setting of σ = 0 and A = A∗. In this setting, we can see from
Equation 2.1 that the output y equals one of the activation values g(⟨a∗

i ,x⟩),
for i ∈ [k], with probability 1. Since we already have access to the true
parameters, i.e. A = A∗, we can see that we can exactly recover the hidden
latent variable z, which corresponds to the chosen hidden expert for each
sample (x, y). Thus the problem of learning the classifiers w∗

i , . . . ,w
∗
k−1

reduces to a multi-class classification problem with label z for each input x

and hence can be efficiently solved by traditional methods such as logistic
regression. It turns out that these observations can be formalized to deal
with more general settings (where we only know the regressors approximately
and the noise variance is not zero) and that the gradient descent on the
log-likelihood loss achieves the same objective. Hence we use the negative

25

log-likelihood function to learn the classifiers, i.e.

Llog(W ,A)

≜ −E(x,y)[logPy|x] (3.4)

= −E log

∑
i∈[k]

e⟨wi,x⟩∑
j∈[k] e

⟨wj ,x⟩
· N (y|g(⟨ai,x⟩), σ2)

 ,

where W⊤ =
[
w1|w2| . . . |wk−1

]
. Note that the objective Equation 3.4 in

not convex in the gating parameters W whenever σ ≠ 0. We omit the input
distribution Px from the above negative log-likelihood since it does not depend
on any of the parameters. We now define the domain of the gating parameters
Ω as

W ∈ Ω ≜ {W ∈ R(k−1)×d : ∥wi∥2 ≤ R, ∀i ∈ [k − 1]},

for some fixed R > 0. Without loss of generality, we assume that wk = 0.
Since we know the regressors approximately from the previous stage, i.e.
A ≈ A∗, we run gradient descent only for the classifier parameters keeping
the regressors fixed, i.e.

W t+1 = ΠΩ(W t − α∇WLlog(W t,A)),

where α > 0 is a suitably chosen learning-rate, ΠΩ(W) denotes the projection
operator which maps each row of its input matrix onto the ball of radius R,
and t > 0 denotes the iteration step. In a more succinct way, we write

W t+1 = G(W t,A),

G(W ,A) ≜ ΠΩ(W − α∇WLlog(W ,A)).

Note that G(W,A) denotes the projected gradient descent operator on W for
fixed A. In the finite sample regime, we define our loss L

(n)
log (W ,A) as the

finite sample counterpart of Equation 3.4 by taking empirical expectations.
Accordingly, we define the gradient operator Gn(W ,A) as

Gn(W ,A) ≜ ΠΩ(W − α∇WL
(n)
log (W ,A)).

26

In this paper, we analyze a sample-splitting version of the gradient de-
scent, where given the number of samples n and the iterations T , we first
split the data into T subsets of size ⌊n/T ⌋, and perform iterations on
fresh batch of samples, i.e. W t+1 = Gn/T (W t,A). We use the norm
∥W −W ∗∥ = maxi∈[k−1] ∥wi −w∗

i ∥2 for our theoretical results. The following
theorem establishes the almost geometric convergence of the population-
gradient iterates under some high SNR conditions. The following results are
stated for R = 1 for simplicity and also hold for any general R > 0.

Theorem 5 (GD convergence for classifiers). Assume that maxi∈[k] ∥ai −
a∗i ∥2 = σ2εreg. Then there exists two positive constants α0 and σ0 such that
for any step size 0 < α ≤ α0 and noise variance σ2 < σ2

0, the population
gradient descent iterates {W }t≥0 converge almost geometrically to the true
parameter W ∗ for any randomly initialized W0 ∈ Ω, i.e.

∥W t −W ∗∥ ≤ (ρσ)
t ∥W 0 −W ∗∥+ κεreg

t−1∑
τ=0

(ρσ)
τ ,

where (ρσ, κ) ∈ (0, 1)× (0,∞) are dimension-independent constants depending
on g, k and σ such that ρσ = oσ(1) and κ = Ok,σ(1).

Proof. (Sketch) For simplicity, let εreg = 0. Then we can show that G(W ∗,A∗) =

W ∗ since ∇WLlog(W = W ∗,A∗) = 0. Then we capitalize on the fact that
G(·,A∗) is strongly convex with minimizer at W = W ∗ to show the geomet-
ric convergence rate. The more general case of εreg > 0 is handled through
perturbation analysis.

We conclude our theoretical discussion on MoE by providing the following
finite sample complexity guarantees for learning the classifiers using the
gradient descent in the following theorem, which can be viewed as a finite
sample version of Theorem 5.

Theorem 6 (Finite sample complexity and convergence rates for GD). In
addition to the assumptions of Theorem 5, assume that the sample size n

is lower bounded as n ≥ c1Td log(
T
δ
). Then the sample-gradient iterates

27

(a) (b) (c)

Figure 3.2: (a), (b): Robustness to parameter orthogonality: Plots show
performance over 5 different trials for our losses L4 and Llog respectively. (c)
Robustness to Gaussianity of input: Performance over various mixing
probabilities p.

{W t}Tt=1 based on n/T samples per iteration satisfy the bound

∥W t −W ∗∥ ≤ (ρσ)
t∥W 0 −W ∗∥

+
1

1− ρσ

(
κεreg + c2

√
dT log(Tk/δ)

n

)

with probability at least 1− δ.

3.3 Experiments

In this section, we empirically validate the fact that running SGD on our
novel loss functions L4 and Llog achieves superior performance compared to
the existing approaches. Moreover, we empirically show that our algorithms
are robust to the technical assumptions made in Theorem 3 and that they
achieve equally good results even when the assumptions are relaxed.

Data generation. For our experiments, we choose d = 10, k ∈ {2, 3},
a∗
i = ei for i ∈ [k] and w∗

i = ek+i for i ∈ [k − 1], and g = Id. We generate
the data {(xi, yi)

n
i=1} according to Equation 2.1 and using these ground-truth

parameters. We chose σ = 0.05 for all of our experiments.
Error metric. If A ∈ Rk×d denotes the matrix of regressors where each

row is of norm 1, we use the error metric Ereg to gauge the closeness of A to

28

the ground-truth A∗:

Ereg ≜ 1−max
π∈Sk

min
i∈[k]
|⟨ai,a

∗
π(i)⟩|,

where Sk denotes the set of all permutations on [k]. Note that Ereg ≤ ε if
and only if the learnt regressors have a minimum correlation of 1− ε with
the ground-truth parameters, upto a permutation. The error metric Egating is
defined similarly.

Results. In Figure 3.1, we choose k = 3 and compare the performance
of our algorithm against existing approaches. In particular, we consider
three methods: 1) EM algorithm, 2) SGD on the the classical ℓ2-loss from
Equation 3.1, and 3) SGD on our losses L4 and Llog. For all the methods, we
ran 5 independent trials and plotted the mean error. Figure 3.1a highlights
the fact that minimizing our loss function L4 by SGD recovers the ground-
truth regressors, whereas SGD on ℓ2-loss as well as EM get stuck in local
optima. For learning the gating parameters W using our approach, we first
fix the regressors A at the values learnt using L4, i.e. A = Â, where Â is
the converged solution for L4. For ℓ2 and the EM algorithm, the gating
parameters W are learnt jointly with regressors A. Figure 3.1b illustrates the
phenomenon that our loss Llog for learning the gating parameters performs
considerably better than the standard approaches, as indicated in significant
gaps between the respective error values. Finally, in Figure 3.1c we plot
the regressor error for L4 over 5 random initializations. We can see that
we recover the ground truth parameters in all the trials, thus empirically
corroborating our technical results in Section 3.2.

3.3.1 Robustness to technical assumptions

In this section, we verify numerically the fact that our algorithms work equally
well in the absence of technical assumptions made in Section 3.2.

Relaxing orthogonality in Theorem 3. A key assumption in proving
Theorem 3, adapted from [43], is that the set of regressors {a∗i } and set of
gating parameters {w∗

i } are orthogonal to each other. While this assumption is
needed for the technical proofs, we now empirically verify that our conclusions
still hold when we relax this. For this experiment, we choose k = 2 and let
(a∗1, a

∗
2) = (e1, e2). For the gating parameter w∗ ≜ w∗

1, we randomly generate

29

it from uniform distribution on the d-dimensional unit sphere. In Figure A.2a
and Figure A.2b, we plotted the individual parameter estimation error for 5

different runs for both of our losses L4 and Llog for learning the regressors and
the gating parameter respectively. We can see that our algorithms are still
able to learn the true parameters even when the orthogonality assumption is
relaxed.

Relaxing Gaussianity of the input. To demonstrate the robustness
of our approach to the assumption that the input x is standard Gaussian,
i.e. x ∼ N (0, Id), we generated x according to a mixture of two symmetric
Gaussians each with identity covariances, i.e. x ∼ pN (µ, Id)+(1−p)N (−µ, Id),
where p ∈ [0, 1] is the mixing probability and µ ∈ Rd is a fixed but randomly
chosen vector. For various mixing proportions p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, we
ran SGD on our loss L4 to learn the regressors. Figure 3.2c highlights that
we learn these ground truth parameters in all the settings.

Finally we note that in all our experiments, the loss L4 seems to require
a larger batch size (1024) for its gradient estimation while running SGD.
However, with smaller batch sizes such as 128 we are still able to achieve
similar performance but with more variance.

30

Chapter 4

KO Codes: Novel Neural Codes

4.1 Introduction

Physical layer communication underpins the information age (WiFi, cellular,
cable and satellite modems). Codes, composed of encoder and decoder pairs,
are the basic mathematical objects enabling reliable communication: encoder
maps original data bits into a longer sequence, and decoders map the received
sequence to the original bits. Reliability is precisely measured: bit error rate
(BER) measures the fraction of input bits that were incorrectly decoded; block
error rate (BLER) measures the fraction of times at least one of the original
data bits was incorrectly decoded.

Landmark codes include Reed-Muller (RM), BCH, Turbo, LDPC and Polar
codes [3]: each is a linear code and represents a mathematical breakthrough
discovered over a span of six decades. The impact on humanity is huge: each
of these codes has been used in global communication standards over the
past six decades. These codes essentially operate at the information-theoretic
limits of reliability over the additive white Gaussian noise (AWGN) channel,
when the number of information bits is large, the so-called “large block length"
regime. In the small and medium block length regimes, the state-of-the-art
codes are algebraic: encoders and decoders are invented based on specific
linear algebraic constructions over the binary and higher order fields and rings.
Especially prominent binary algebraic codes are RM codes and closely related
polar codes, whose encoders are recursively defined as Kronecker products of
a simple linear operator and constitute the state of the art in small-to-medium
block length regimes.

Inventing new codes is a major intellectual activity both in academia and
the wireless industry; this is driven by emerging practical applications, e.g.,
low block length regime in Internet of Things [46]. The core challenge is that

31

the space of codes is very vast and the sizes astronomical; for instance a rate
1/2 code over even 100 information bits involves designing 2100 codewords in
a 200 dimensional space. Computationally efficient encoding and decoding
procedures are a must, apart from high reliability. Thus, although a random
code is information theoretically optimal, neither encoding nor decoding is
computationally efficient. The mathematical landscape of computationally
efficient codes has been plumbed over the decades by some of the finest
mathematical minds, resulting in two distinct families of codes: algebraic
codes (RM, BCH – focused on properties of polynomials) and graph codes
(Turbo, LDPC – based on sparse graphs and statistical physics). The former
is deterministic and involves discrete mathematics, while the latter harnesses
randomness, graphs, and statistical physics to behave like a pseudorandom
code. A major open question is the invention of new codes, and especially
fascinating would be a family of codes outside of these two classes.

Our major result is the invention of a new family of codes, called KO codes,
that have features of both code families: they are nonlinear generalizations of
the Kronecker operation underlying the algebraic codes (e.g., Reed-Muller)
parameterized by neural networks; the parameters are learnt in an end-
to-end training paradigm in a data driven manner. Deep learning (DL)
has transformed several domains of human endeavor that have traditionally
relied heavily on mathematical ingenuity, e.g., game playing (AlphaZero [47]),
biology (AlphaFold [48]), and physics (new laws [49]). Our results can be
viewed as an added domain to the successes of DL in inventing mathematical
structures.

A linear encoder is defined by a generator matrix, which maps information
bits to a codeword. The RM and the Polar families construct their generator
matrices by recursively applying the Kronecker product operation to a simple
two-by-two matrix and then selecting rows from the resulting matrix. The
careful choice in selecting these rows is driven by the desired algebraic structure
of the code, which is central to achieving the large minimum pairwise distance
between two codewords, a hallmark of the algebraic family. This encoder can
be alternatively represented by a computation graph. The recursive Kronecker
product corresponds to a complete binary tree, and row-selection corresponds
to freezing a set of leaves in the tree, which we refer to as a “Plotkin tree",
inspired by the pioneering construction in [50].

The Plotkin tree skeleton allows us to tailor a new neural network architec-

32

ture: we expand the algebraic family of codes by replacing the (linear) Plotkin
construction with a non-linear operation parametrized by neural networks.
The parameters are discovered by training the encoder with a matching
decoder, that has the matching Plotkin tree as a skeleton, to minimize the
error rate over (the unlimited) samples generated on AWGN channels.

Algebraic and the original RM codes promise a large worst-case pairwise
distance [51]. This ensures that RM codes achieve capacity in the large block
length limit [52]. However, for short block lengths, they are too conservative
as we are interested in the average-case reliability. This is the gap KO codes
exploit: we seek a better average-case reliability and not the minimum pairwise
distance.

Figure 4.1: KO(9, 2), discovered by training a neural network with a
carefully chosen architecture in Section 4.3, significantly improves upon
state-of-the-art RM(9, 2) both in BER and BLER. (For both codes, the code
block length is 29 = 512 and the number of transmitted message bits is(
9
0

)
+
(
9
1

)
+
(
9
2

)
= 55. Also, both codes are decoded using successive

cancellation decoding with similar decoding complexity)

Figure 4.1 illustrates the gain for the example of RM(9, 2) code. Using
the Plotkin tree of RM(9, 2) code as a skeleton, we design the KO(9, 2) code
architecture and train on samples simulated over an AWGN channel. We
discover a novel non-linear code and a corresponding efficient decoder that
improves significantly over the RM(9, 2) code baseline, assuming both codes
are decoded using successive cancellation decoding with similar decoding
complexity. Analyzing the pairwise distances between two codewords reveals
a surprising fact. The histogram for KO code nearly matches that of a random

33

Gaussian codebook. The skeleton of the architecture from an algebraic family
of codes, the training process with a variation of the stochastic gradient
descent, and the simulated AWGN channel have worked together to discover
a novel family of codes that harness the benefits of both algebraic and
pseudorandom constructions.

Figure 4.2: Histogram of pairwise distances between codewords of the
KO(9, 2) code shows a strong resemblance to that of the Gaussian codebook,
unlike the classical Reed-Muller code RM(9, 2).

In summary, we make the following contributions: We introduce novel
neural network architectures for the (encoder, decoder) pair that generalizes
the Kronecker operation central to RM/Polar codes. We propose training
methods that discover novel non-linear codes when trained over AWGN and
provide empirical results showing that this family of non-linear codes improves
significantly upon the baseline code it was built on (both RM and Polar codes)
whilst having the same encoding and decoding complexity. Interpreting the
pairwise distances of the discovered codewords reveals that a KO code mimics
the distribution of codewords from the random Gaussian codebook, which
is known to be reliable but computationally challenging to decode. The
decoding complexities of KO codes are O(n log n) where n is the block length,
matching that of efficient decoders for RM and Polar codes.

We highlight that the design principle of KO codes serves as a general
recipe to discover new family of non-linear codes improving upon their linear
counterparts. In particular, the construction is not restricted to a specific
decoding algorithm, such as successive cancellation (SC). In this paper, we

34

focus on the SC decoding algorithm since it is one of the most efficient
decoders for the RM and Polar family. At this decoding complexity, i.e.
O(n log n), our results demonstrate that we achieve significant gain over these
codes. Our preliminary results show that KO codes achieve similar gains over
the RM codes, when both are decoded with list-decoding. We refer to §C.2
for more details. Designing KO-inspired codes to improve upon the RPA
decoder for RM codes (with complexity O(nr log n) [53]), and the list-decoded
Polar codes (with complexity O(Ln log n) [54]) where L is the list size, are
promising active research directions, and outside the scope of this paper.

4.2 Problem formulation and background

We formally define the channel coding problem and provide background on
Reed-Muller codes, the inspiration for our approach. Our notation is the
following. We denote Euclidean vectors by bold face letters like m,L, etc.
For L ∈ Rn, Lk:m ≜ (Lk, . . . , Lm). If v ∈ {0, 1}n, we define the operator ⊕v

as x⊕v y ≜ x+ (−1)vy.

4.2.1 Channel coding

Let m = (m1, . . . ,mk) ∈ {0, 1}k denote a block of information/message bits
that we want to transmit. An encoder gθ(·) is a function parametrized by
θ that maps these information bits into a binary vector x of length n, i.e.
x = gθ(m) ∈ {0, 1}n. The rate ρ = k/n of such a code measures how many
bits of information we are sending per channel use. These codewords are
transformed into real (or complex) valued signals, called modulation, before
being transmitted over a channel. For example, Binary Phase Shift Keying
(BPSK) modulation maps each xi ∈ {0, 1} to 1−2xi ∈ {±1} up to a universal
scaling constant for all i ∈ [n]. Here, we do not strictly separate encoding
from modulation and refer to both binary encoded symbols and real-valued
transmitted symbols as codewords. The codewords also satisfy either a hard
or soft power constraint. Here we consider the hard power constraint, i.e.,
∥x∥2 = n.

Upon transmission of this codeword x across a noisy channel PY |X(·|·),
we receive its corrupted version y ∈ Rn. The decoder fϕ(·) is a function

35

parametrized by ϕ that subsequently processes the received vector y to
estimate the information bits m̂ = fϕ(y). The closer m̂ is to m, the more
reliable the transmission. An error metric, such as Bit-Error-Rate (BER) or
Block-Error-Rate (BLER), gauges the performance of the encoder-decoder
pair (gθ, fϕ). Note that BER is defined as BER ≜ (1/k)

∑
i P (m̂i ̸= mi),

whereas BLER ≜ P (m̂ ̸= m).
The design of good codes given a channel and a fixed set of code parameters

(k, n) can be formulated as:

(θ, ϕ) ∈ argmin
θ,ϕ

BER(gθ, fϕ) , (4.1)

which is a joint classification problem for k binary classes, and we train
on the surrogate loss of cross entropy to make the objective differentiable.
While classical optimal codes such as Turbo, LDPC, and Polar codes all have
linear encoders, appropriately parametrizing both the encoder gθ(·) and the
decoder fϕ(·) by neural networks (NN) allows for a much broader class of
codes, especially non-linear codes. However, in the absence of any structure,
NNs fail to learn non-trivial codes and end up performing worse than simply
repeating each message bit n/k times [8, 9].

A fundamental question in machine learning for channel coding is thus:
how do we design architectures for our neural encoders and decoders that
give the appropriate inductive bias? To gain intuition towards addressing
this, we focus on Reed-Muller (RM) codes. In §4.3, we present a novel family
of non-linear codes, KO codes, that strictly generalize and improve upon RM
codes by capitalizing on their inherent recursive structure. Our approach
seamlessly generalizes to Polar codes, explained in §4.5.

4.2.2 Reed-Muller (RM) codes

We use a small example of RM(3, 1) and refer to Appendix C.5 for the larger
example in our main results.

Encoding. RM codes are a family of codes parametrized by a variable
size m ∈ Z+ and an order r ∈ Z+ with r ≤ m, denoted as RM(m, r). It is
defined by an encoder, which maps binary information bits m ∈ {0, 1}k to
codewords x ∈ {0, 1}n. RM(m, r) code sends k =

∑r
i=0

(
m
i

)
information bits

with n = 2m transmissions. The code distance measures the minimum distance

36

between all (pairs of) codewords. Table 4.1 summarizes these parameters.

Code length Code dimension Rate Distance

n = 2m k =
∑r

i=0

(
m
i

)
ρ=k/n d=2m−r

Table 4.1: Parameters of a RM(m, r) code

One way to define RM(m, r) code is via the recursive application of a
Plotkin construction. The basic building block is a mapping Plotkin : {0, 1}ℓ×
{0, 1}ℓ → {0, 1}2ℓ, where

Plotkin(u,v) = (u,u⊕ v) , (4.2)

with ⊕ representing a coordinate-wise XOR and (·, ·) denoting concatenation
of two vectors [50].

In view of the Plotkin construction, RM codes are recursively defined as a
set of codewords of the form:

RM(m, r) = {(u,u⊕ v) : u ∈ RM(m− 1, r),

v ∈ RM(m− 1, r − 1)}, (4.3)

where RM(m, 0) is a repetition code that repeats a single information bit 2m

times, i.e., x = (m1,m1, . . . ,m1). When r = m, the full-rate RM(m,m) code
is also recursively defined as a Plotkin construction of two RM(m− 1,m− 1)

codes. Unrolling the recursion in Eq. (4.3), a RM(m, r) encoder can be
represented by a corresponding (rooted and binary) computation tree, which
we refer to as its Plotkin tree. In this tree, each branch represents a Plotkin
mapping of two codes of appropriate lengths, recursively applied from the
leaves to the root.

Figure 4.3a illustrates such a Plotkin tree decomposition of RM(3, 1) en-
coder. Encoding starts from the bottom right leaves. The leaf RM(1, 0) maps
m3 to (m3,m3) (repetition), and another leaf RM(1, 1) maps (m1,m2) to
(m1,m1 ⊕m2) (Plotkin mapping of two RM(0, 0) codes). Each branch in this
tree performs the Plotkin construction of Eq. (4.2). The next operation is
the parent of these two leaves which performs Plotkin(RM(1, 1),RM(1, 0)) =

Plotkin((m1,m1⊕m2), (m3,m3)) which outputs the vector (m1,m1⊕m2,m1⊕
m3,m1 ⊕ m2 ⊕ m3), which is known as RM(2, 1) code. This coordinate-
wise Plotkin construction is applied recursively one more time to combine

37

RM(3,1)

Plotkin

RM(2,0)Plotkin

RM(1,0)RM(1,1)

m4

m3 m1,m2

RM(2,1)

(a) Plotkin encoder

KO(3,1)

g1(·)

RM(2,0) g2(·)

RM(1,0)RM(1,1)

m4

m3 m1,m2

(b) KO encoder
y L

MAP dec. Lu

MAP dec. MAP dec.

m̂4

m̂3 m̂1, m̂2

LSE ⊕v̂

LSE ⊕v̂

RM(2,0) RM(2,1)

RM(1,0) RM(1,1)

(c) Dumer’s decoder

y

Soft-MAP yu

Soft-MAP Soft-MAP

m̂4

m̂3 m̂1, m̂2

f1 f2

f3 f4

(d) KO decoder

Figure 4.3: Plotkin trees for RM(3, 1) and KO(3, 1) codes. Leaves are shown
in green. Red arrows indicate the bit decoding order.

RM(2, 0) and RM(2, 1) at the root of the tree. The resulting codewords
are RM(3, 1) = Plotkin(RM(2, 1),RM(2, 0)) = Plotkin((m1,m1 ⊕m2,m1 ⊕
m3,m1 ⊕m2 ⊕m3), (m4,m4,m4,m4)).

This recursive structure of RM codes (i) inherits the good minimum distance
property of the Plotkin construction and (ii) enables efficient decoding.

Decoding. Since the classical Reed’s algorithm [55], there have been
several decoders for RM codes; [56] is a detailed survey. We focus on the most
efficient one, called Dumer’s recursive decoding [1,57,58] that fully capitalizes
on the recursive Plotkin construction in Eq. (4.3). The basic principle is: to
decode an RM codeword x = (u,u ⊕ v) ∈ RM(m, r), we first recursively
decode the left sub-codeword v ∈ RM(m − 1, r − 1), and then the right

38

sub-codeword u ∈ RM(m − 1, r), and we use them together to stitch back
the original codeword. This recursion is continued until we reach the leaf
nodes where we perform maximum a posteriori (MAP) decoding. Dumer’s
recursive decoding is also referred to as successive cancellation decoding in
the context of polar codes [59].

Figure 4.3c illustrates this decoding procedure for RM(3, 1). Dumer’s
decoding starts at the root and uses the soft-information of codewords to
decode the message bits. Suppose that the message bits m = (m1, . . . ,m4)

are encoded into an RM(3, 1) codeword x ∈ {0, 1}8 using the Plotkin encoder
in Figure 4.3a. Let y ∈ R8 be the corresponding noisy codeword received at
the decoder. To decode the bits m, we first obtain the soft-information of
the codeword x, i.e., we compute its Log-Likehood-Ratio (LLR) L ∈ R8:

Li = log
P (yi|xi = 0)

P (yi|xi = 1)
, i = 1, . . . , 8.

We next use L to compute soft-information for its left and right children: the
RM(2, 0) codeword v and the RM(2, 1) codeword u. We start with the left
child, v.

Since the codeword x = (u,u ⊕ v), we can also represent its left child
as v = u ⊕ (u ⊕ v) = x1:4 ⊕ x5:8. Hence its LLR vector Lv ∈ R4 can
be readily obtained from that of x. In particular it is given by the log-
sum-exponential transformation: Lv = LSE(L1:4,L5:8), where LSE(a, b) ≜

log((1 + ea+b)/(ea + eb)) for a, b ∈ R. Since this feature Lv corresponds to a
repetition code, v = (m4,m4,m4,m4), majority decoding (same as the MAP)
on the sign of Lv yields the decoded message bit as m̂4. Finally, the left
codeword is decoded as v̂ = (m̂4, m̂4, m̂4, m̂4).

Having decoded the left RM(2, 0) codeword v̂, our goal is to now obtain
soft-information Lu ∈ R4 for the right RM(2, 1) codeword u. Fixing v = v̂,
notice that the codeword x = (u,u⊕ v̂) can be viewed as a 2-repetition of u
depending on the parity of v̂. Thus the LLR Lu is given by LLR addition
accounting for the parity of v̂: Lu = L1:4 ⊕v̂ L5:8 = L1:4 + (−1)v̂L5:8. Since
RM(2, 1) is an internal node in the tree, we again recursively decode its
left child RM(1, 0) and its right child RM(1, 1) which are both leaves. For
RM(1, 0), decoding is similar to that of RM(2, 0) above, and we obtain its
information bit m̂3 by first applying the log-sum-exponential function on the
feature Lu and then majority decoding. Likewise, we obtain the LLR feature

39

Luu ∈ R2 for the right RM(1, 1) child using parity-adjusted LLR addition
on Lu. Finally, we decode its corresponding bits (m̂1, m̂2) using efficient
MAP-decoding of first order RM codes [56]. Thus we obtain the full block of
decoded message bits as m̂ = (m̂1, m̂2, m̂3, m̂4).

An important observation from Dumer’s algorithm is that the sequence
of bit decoding in the tree is: RM(2, 0)→ RM(1, 0)→ RM(1, 1). A similar
decoding order holds for all RM(m, 2) codes, where all the left leaves (order-1
codes) are decoded first from top to bottom, and the right-most leaf (full-rate
RM(2, 2)) is decoded at the end.

4.3 KO codes: Novel Neural codes

We design KO codes using the Plotkin tree as the skeleton of a new neural
network architecture which strictly improve upon their classical counterparts.
KO encoder. Earlier we saw the design of RM codes via recursive Plotkin
mapping. Inspired by this elegant construction, we present a new family
of codes, called KO codes, denoted as KO(m, r, gθ, fϕ). These codes are
parametrized by a set of four parameters: a non-negative integer pair (m, r),
a finite set of encoder neural networks gθ, and a finite set of decoder neural
networks fϕ. In particular, for any fixed pair (m, r), our KO encoder inherits
the same code parameters (k, n, ρ) and the same Plotkin tree skeleton of the
RM encoder. However, a critical distinguishing component of our KO(m, r)

encoder is a set of encoding neural networks gθ = {gi} that strictly generalize
the Plotkin mapping; to each internal node i of the Plotkin tree, we associate
a neural network gi that applies a coordinate-wise real valued non-linear
mapping (u,v) 7→ gi(u,v) ∈ R2ℓ as opposed to the classical binary valued
Plotkin mapping (u,v) 7→ (u,u⊕ v) ∈ {0, 1}2ℓ. Figure 4.3b illustrates this
for the KO(3, 1) encoder.

The significance of our KO encoder gθ is that by allowing for general
nonlinearities gi to be learnt at each node, we enable for a much richer and
broader class of nonlinear encoders and codes to be discovered on a whole
which contribute to non-trivial gains over standard RM codes. Further, we
have the same encoding complexity as that of an RM encoder since each
gi : R2 → R is applied coordinate-wise on its vector inputs. The parameters
of these neural networks gi are trained via stochastic gradient descent on the

40

cross entropy loss. See §C.7 for experimental details.
KO decoder. Training the encoder is possible only if we have a corresponding
decoder. This necessitates the need for an efficient family of matching decoders.
Inspired by the Dumer’s decoder, we present a new family of KO decoders
that fully capitalize on the recursive structure of KO encoders via the Plotkin
tree.

Our KO decoder has three distinct features:
(i) Neural decoder: The KO decoder architecture is parametrized by a

set of decoding neural networks fϕ = {(f2i−1, f2i)}. Specifically, to each
internal node i in the tree, we associate f2i−1 to its left branch whereas f2i

corresponds to the right branch. Figure 4.3d shows this for the KO(3, 1)

decoder. The pair of decoding neural networks (f2i−1, f2i) can be viewed
as matching decoders for the corresponding encoding network gi: While gi

encodes the left and right codewords arriving at this node, the outputs of
f2i−1 and f2i represent appropriate Euclidean feature vectors for decoding
them. Further, f2i−1 and f2i can also be viewed as a generalization of Dumer’s
decoding to nonlinear real codewords: f2i−1 generalizes the LSE function,
while f2i extends the operation ⊕v̂. Note that both the functions f2i−1 and
f2i are also applied coordinate-wise and hence we inherit the same decoding
complexity as Dumer’s.
(ii) Soft-MAP decoding: Since the classical MAP decoding to decode

the bits at the leaves is not differentiable, we design a new differentiable
counterpart, the Soft-MAP decoder. Soft-MAP decoder enables gradients to
pass through it which is crucial for training the neural (encoder, decoder)
pair (gθ, fϕ) in an end-to-end manner.
(iii) Channel agnostic: Our decoder directly operates on the received noisy

codeword y ∈ Rn while Dumer’s decoder uses its LLR transformation L ∈ Rn.
Thus, our decoder can learn the appropriate channel statistics for decoding
directly from y alone; in contrast, Dumer’s algorithm requires precise channel
characterization which is not usually known.

4.4 Main results

We train the KO encoder gθ and KO decoder fϕ from §4.3 using an approxi-
mation of the BER loss in (4.1). The details are provided in §C.7. In this

41

section we focus on the second-order KO(8, 2) and KO(9, 2) codes.

4.4.1 KO codes improve over RM codes

In Figure 4.1, the trained KO(9, 2) improves over the competing RM(9, 2)

both in BER and BLER. The superiority in BLER is unexpected as our
training loss is a surrogate for the BER. Though one would prefer to train
on BLER as it is more relevant in practice, it is challenging to design a
surrogate loss for BLER that is also differentiable: all literature on learning
decoders minimize only BER [60–62]. Consequently, improvements in BLER
with trained encoders and/or decoders are rare. We discover a code that
improves both BER and BLER, and we observe a similar gain with KO(8, 2)

in Figure 4.4. Performance of a binarized version KO-b(8, 2) is also shown
which we describe further in §4.4.4.

Figure 4.4: Neural network based KO(8, 2) and KO-b(8, 2) improve upon
RM(8, 2) in BER and BLER, but the gain is small for the binarized
codewords of KO-b(8, 2) (for all the codes, the code dimension is 37 and
block length is 256).

4.4.2 Interpreting KO codes

We interpret the learned encoders and decoders to explain the source of the
performance gain.

Interpreting the KO encoder. To interpret the learned KO code, we
examine the pairwise distance between codewords. In classical linear coding,

42

pairwise distances are expressed in terms of the weight distribution of the
code, which counts how many codewords of each specific Hamming weight
1, 2, . . . , n exist in the code. The weight distribution of linear codes are used
to derive analytical bounds that can be explicitly computed on the BER and
BLER over AWGN channels [63]. For nonlinear codes, however, the weight
distribution does not capture pairwise distances. Therefore, we explore the
distribution of all the pairwise distances of non-linear KO codes that can play
the same role as the weight distribution does for linear codes.

The pairwise distance distribution of the RM codes remains an active area
of research as it is used to prove that RM codes achieve the capacity [64–66]
(Figure 4.5 blue). However, these results are asymptotic in the block length and
do not guarantee a good performance, especially in the small-to-medium block
lengths that we are interested in. On the other hand, Gaussian codebooks,
codebooks randomly picked from the ensemble of all Gaussian codebooks, are
known to be asymptotically optimal, i.e., achieving the capacity [2], and also
demonstrate optimal finite-length scaling laws closely related to the pairwise
distance distribution [67] (Figure 4.5 orange).

Remarkably, the pairwise distance distribution of KO code shows a stag-
gering resemblance to that of the Gaussian codebook of the same rate ρ and
blocklength n (Figure 4.5 red). This is an unexpected phenomenon since we
minimize only BER. We posit that the NN training has learned to construct a
Gaussian-like codebook in order to minimize BER. Most importantly, unlike
the Gaussian codebook, KO codes constructed via NN training are fully
compatible with efficient decoding. This phenomenon is observed for all
order-2 codes we trained (e.g., Figure 4.2 for KO(9, 2)).

43

Figure 4.5: Histograms of pairwise distances between codewords for (8, 2)
codes reveal that KO(8, 2) code has learned an approximate Gaussian
codebook that can be efficiently decoded.

Interpreting the KO decoder. We now analyze how the KO decoder con-
tributes to the gains in BLER over the RM decoder. Let m = (m(7,1), . . . ,m(2,2))

denote the block of transmitted message bits where the ordered set of indices
L = {(7, 1), . . . , (2, 2)} correspond to the leaf branches (RM codes) of the
Plotkin tree. Let m̂ be the decoded estimate by the KO(8, 2) decoder.

We provide Plotkin trees of RM(8, 2) and KO(8, 2) decoders in Figures C.5a
and C.5b in the appendix. Recall that for this KO(8, 2) decoder, similar to
the KO(3, 1) decoder in Figure 4.3d, we decode each sub-code in the leaves
sequentially, starting from the (7, 1) branch down to (2, 2): m̂(7,1) → . . .→
m̂(2,2). In view of this decoding order, BLER, defined as P (m̂ ̸= m), can be
decomposed as

P (m̂ ̸= m)=
∑
i∈L

P (m̂i ̸= mi, m̂1:i−1 = m1:i−1) . (4.4)

In other words, BLER can also be represented as the sum of the fraction of
errors the decoder makes in each of the leaf branches when no errors were
made in the previous ones. Thus, each term in Eq. (4.4) can be viewed as
the contribution of each sub-code to the total BLER.

This is plotted in Figure 4.6 which shows that the KO(8, 2) decoder achieves
better BLER than the RM(8, 2) decoder by making major gains in the

44

leftmost (7, 1) branch (which is decoded first) at the expense of other branches.
However, the decoder (together with the encoder) has learnt to better balance
these contributions evenly across all branches, resulting in lower BLER overall.
The unequal errors in the branches of the RM code has been observed before,
and some efforts have been made to balance them [68]; the fact KO codes
learn such a balancing scheme purely from data is, perhaps, remarkable.

RM(8, 2)

KO(8, 2)

BLER

Figure 4.6: Separating each sub-code contribution in the KO(8, 2) decoder
and the RM(8, 2) decoder reveals that KO(8, 2) improves in the total BLER
by balancing the contributions more evenly over the sub-codes.

4.4.3 Robustness to non-AWGN channels

As the environment changes dynamically in real world channels, robustness is
crucial in practice. We therefore test the KO code under canonical channel
models and demonstrate robustness, i.e., the ability of a code trained on
AWGN to perform well under a different channel without retraining. It is well
known that Gaussian noise is the worst case noise among all noise with the
same variance [2, 69] when an optimal decoder is used which might take an
exponential time. When decoded with efficient decoders, as we do with both
RM and KO codes, catastrophic failures have been reported in the case of
Turbo decoders [8]. We show that both RM codes and KO codes are robust
and that KO codes maintain their gains over RM codes as the channels vary.

45

Figure 4.7: KO(8, 2) trained on AWGN is robust when tested on a fast
fading channel and maintains a significant gain over RM(8,2).

We first test on a Rayleigh fast fading channel, defined as yi = aixi + ni,
where xi is the transmitted symbol, yi is the received symbol, ni ∼ N (0, σ2)

is the additive Gaussian noise, and a is from a Rayleigh distribution with the
variance of a chosen as E[a2i] = 1.

We next test on a bursty channel, defined as yi = xi + ni + wi, where xi

is the input symbol, yi is the received symbol, ni ∼ N (0, σ2) is the additive
Gaussian noise, and wi ∼ N (0, σ2

b) with probability ρ and wi = 0 with
probability 1− ρ. In the experiment, we choose ρ = 0.1 and σb =

√
2σ.

Figure 4.8: KO(8, 2) trained on AWGN is robust when tested on a bursty
channel and maintains a significant gain over RM(8, 2).

46

4.4.4 Ablation studies

In comparison to the classical RM codes, the KO codes have two additional
features: real-valued codewords and non-linearity. It is thus natural to ask how
each of these components contribute to its gains over RM codes. To evaluate
their contribution, we did ablation experiments for KO(8, 2): (i) First, we
constrain the KO codewords to be binary but allow for non-linearity in the
encoder gθ. The performance of this binarized version KO-b(8, 2) is illustrated
in Figure 4.9 below. We observe that this binarized KO-b(8, 2) performs
similar to RM(8, 2) except for slight gains at high SNRs but uniformly worse
than KO(8, 2). (ii) Now we transmit the real-valued codewords but constrain
the encoder gθ to be linear (in real-value operations). The resulting code, KO-
linear(8, 2), performs almost identical to RM(8, 2) but worse than KO(8, 2),
as highlighted by the orange curve in Figure 4.9.

Figure 4.9: Ablation studies highlight that both non-linearity and real-valued
codewords are equally important for good performance of KO codes. The
linear version, KO-linear(8, 2), and the binary version, KO-b(8, 2), both
perform worse than KO(8, 2) and similar to RM(8, 2).

These ablation experiments suggest us that presence of both the non-
linearity and real-valued codewords are necessary for the good performance of
KO codes and removal of any of these components hurts the gains it achieves
over RM codes. Further, this also highlights that in absence of either of these
components, the performance drops back to that of the original RM codes.

47

4.4.5 Complexity of KO decoding

Ultra-Reliable Low Latency Communication (URLLC) is increasingly required
for modern applications including vehicular communication, virtual reality,
and remote robotics [70, 71]. In general, a KO(m, r) code requires O(n log n)

operations to decode which is the same as the efficient Dumer’s decoder
for an RM(m, r) code, where n = 2m is the block length. More precisely,
the successive cancellation decoder for RM(8, 2) requires 11268 operations
whereas KO(8, 2) requires 550644 operations which we did not try to optimize
for this project. We discuss promising preliminary results in reducing the
computational complexity in §4.6, where KO decoders achieve a computational
efficiency comparable to the successive cancellation decoders of RM codes.

4.5 KO codes improve upon Polar codes

Results from §4.4 demonstrate that our KO codes significantly improve upon
RM codes on a variety of benchmarks. Here, we focus on a different family of
capacity-achieving landmark codes: Polar codes [59].

Polar and RM codes are closely related, especially from an encoding point-
of-view. The generator matrices of both codes are chosen from the same
parent square matrix by following different row selection rules. More precisely,
consider a RM(m, r) code that has code dimension k =

∑r
i=0

(
m
i

)
and block-

length n = 2m. Its encoding generator matrix is obtained by picking the k

rows of the square matrix Gn×n :=

[
0 1

1 1

]⊗m

that have the largest Hamming

weights (i.e., Hamming weight of at least 2m−r), where [·]⊗m denotes the m-th
Kronecker power. The Polar encoder, on the other hand, picks the rows of
Gn×n that correspond to the most reliable bit-channels [59].

The recursive Kronecker structure inherent to the parent matrix Gn×n can
also be represented by a computation graph, a complete binary tree. Thus
the corresponding computation tree for a Polar code is obtained by freezing a
set of leaves (row-selection). We refer to this encoding computation graph of
a Polar code as its Plotkin tree. This Plotkin tree structure of Polar codes
enables a matching efficient decoder: the successive cancellation (SC). The
SC decoding algorithm is similar to Dumer’s decoding for RM codes. Hence,
Polar codes can be completely characterized by their corresponding Plotkin

48

trees.
Inspired by the Kronecker structure of Polar Plotkin trees, we design a

new family of KO codes to strictly improve upon them. We build a novel
NN architecture that capitalizes on the Plotkin tree skeleton and generalizes
it to nonlinear codes. This enables us to discover new nonlinear algebraic
structures. The KO encoder and decoder can be trained in an end-to-end
manner using variants of stochastic gradient descent (§C.1).

In Figure 4.10, we compare the performance of our KO code with its
competing Polar(64, 7) code, i.e., code dimension k = 7 and block length
n = 64, in terms of BER. Figure 4.10 highlights that our KO code achieves
significant gains over Polar(64, 7) on a wide range of SNRs. In particular,
we obtain a gain of almost 0.7 dB compared to that of Polar at the BER
10−4. For comparison we also plot the performance of both codes with the
optimal MAP decoding. We observe that the BER curve of our KO decoder,
unlike the SC decoder, almost matches that of the MAP decoder, convincingly
demonstrating its optimality.

Figure 4.10: Neural network based KO code improves upon the Polar(64, 7)
code when trained on AWGN channel. KO decoder also matches the optimal
MAP decoder.

We also observe similar improvements for BLER (Figure C.2, §C.1). This
successful case study with training KO (encoder, decoder) pairs further
demonstrates that our novel neural architectures seamlessly generalize to
codes with an underlying Kronecker product structure.

49

4.6 Tiny KO

In this section, we focus on further reducing the total number of mathematical
operations required for our KO decoder with the objective of achieving similar
computational efficiency as the successive cancellation decoder of RM codes.

As detailed in §C.7.2, each neural component in the KO encoder and decoder
has 3 hidden layers with 32 nodes each. For the decoder, the total number
of parameters in each decoder neural block is 69× 32. We replace all neural
blocks with a smaller one with one hidden layer of four nodes. This decoder
neural block has 20 parameters, obtaining a factor of 110 compression in the
number of parameters. The computational complexity of this compressed
decoder, which we refer to as TinyKO, is within a factor of four from Dumer’s
successive cancellation decoder. Each neural network component has two
matrix multiplication steps and one activation function on a vector which can
be fully parallelized on a GPU. With the GPU parallelization, TinyKO has
the same time complexity/latency as Dumer’s SC decoding.

Table 4.2 shows that there is almost no loss in reliability for the compressed
KO(8, 2) encoder and decoder in this manner. Training a smaller neural
network take about two times more iterations compared to the larger one,
although each iteration is faster for the smaller network.

SNR (dB) TinyKO(8, 2) BER KO(8, 2) BER
-10 0.38414 ± 2e-7 0.36555 ± 2e-7
-9 0.29671 ± 2e-7 0.27428 ± 2e-7
-8 0.18037 ± 2e-7 0.15890 ± 2e-7
-7 0.07455 ± 2e-7 0.06167 ± 1e-7
-6 0.01797 ± 8e-8 0.01349 ± 7e-8
-5 2.18083e-3 ± 3e-8 1.46003e-3 ± 2e-8
-4 1.18919e-4 ± 7e-9 0.64702e-4 ± 4e-9
-3 4.54054e-6 ± 1e-9 3.16216e-6 ± 1e-9

Table 4.2: The smaller TinyKO neural architecture with 100 times smaller
number of parameters achieve similar bit-error-rates as the bigger KO
architecture.

If one is allowed more computation time (e.g., O(nr log n)), then [53]
proposes a recursive projection-aggregation (RPA) decoder for RM(m, r) codes
that significantly improves over Dumer’s successive cancellation. With list
decoding, this is empirically shown to approach the performance of the MAP

50

decoder. It is a promising direction to explore deep learning architectures
upon the computation tree of the RPA decoders to design new family of
codes.

51

Chapter 5

Conclusion

In this dissertation, we gave initial evidence, in the form of KO codes, to our
conjecture that deep-learning can play a crucial role in the discovery of codes
and hence in addressing the long standing goals of coding theory. While these
results are indeed an encouraging first step, there are many exciting future
research directions along this line. We outline them below.

Codes for 5G and beyond

While KO codes make some initial progress along this line in the context of
point-to-point communication, it would be interesting to build upon these
results to construct codes for more complicated multi-terminal settings: the
interference channel, the relay channel, and the feedback channel. Designing
optimal codes in these scenarios is a long standing open research problem.
Leveraging DL tools to address this would be an exciting step. Apart from
communication, designing codes for distributed computation, data compres-
sion, and data storage is also a fruitful avenue.

Inventing new coding structures

A common theme in using DL to design codes is to rely on classical linear codes
and use their structure as an anchor to construct their non-linear counterparts,
aka the neural augmentation principle. For example, TurboAE [9] uses
the sequential aspect of convolutional/turbo codes whereas our KO codes
capitalize on the recursive tree property of RM/polar codes. However, such an
approach is limited by the existing code structures which are in turn limited
by human ingenuity. An interesting open question here is to automate the
design of these structures and discover a broad family of them directly from
data.

52

Theory of DL via information/coding-theoretic lens

Over the past few years, motivated by the empirical success of DL, there has
been a lot of interest in DL theory. However, to the best of our knowledge,
most of these theoretical works are driven by the DL phenomena observed in
computer vision (CV), natural language processing (NLP), and reinforcement
learning. For example, the recent interest in the analysis of over-parameterized
neural networks (NNs) is inspired by the fact that these models generalize well
in CV and NLP applications, despite being heavily over-parameterized [72].
In view of this, buoyed by the added success of DL in the communication
domain, we would like to propose the information/coding-theoretic framework
of end-to-end communication as a new guiding lens to understand DL models.
Some interesting topics along this line include analysis of the class of codes
learnt by NNs, the loss landscape of NNs, and their generalization properties,
etc. A key leverage of this new framework compared to CV or NLP is that
the underlying communication model and the data generative process are
mathematically well defined. Hence we can capitalize on this feature to obtain
insights about DL models in a principled manner. Further, this synergy
between communication and DL can yield algorithmic insights for designing
the next generation codes.

53

References

[1] I. Dumer and K. Shabunov, “Soft-decision decoding of reed-muller codes:
recursive lists,” IEEE Transactions on information theory, vol. 52, no. 3,
pp. 1260–1266, 2006.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[3] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115,
no. 3, pp. 211–252, 2015.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in neural information processing systems, 2013, pp. 3111–
3119.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot
et al., “Mastering the game of go with deep neural networks and tree
search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” nature, vol. 550, no. 7676, pp.
354–359, 2017.

[8] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication algorithms via deep learning,” arXiv preprint
arXiv:1805.09317, 2018.

[9] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo autoencoder: Deep learning based channel codes for point-to-
point communication channels,” in Advances in Neural Information
Processing Systems, 2019, pp. 2758–2768.

54

[10] M. Welling, “Neural augmentation in wireless communication,” 2020.

[11] V. Tresp, “Mixtures of gaussian processes,” ser. NIPS, 2001.

[12] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of SVMs for
very large scale problems,” Neural Computing, 2002.

[13] J. W. Ng and M. P. Deisenroth, “Hierarchical mixture-of-experts model for
large-scale gaussian process regression,” arXiv preprint arXiv:1412.3078,
2014.

[14] L. Theis and M. Bethge, “Generative image modeling using spatial
lstms,” in Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’15. Cambridge,
MA, USA: MIT Press, 2015, pp. 1927–1935.

[15] P. Le, M. Dymetman, and J.-M. Renders, “Lstm-based mixture-of-experts
for knowledge-aware dialogues,” arXiv preprint arXiv:1605.01652, 2016.

[16] S. Gross, A. Szlam et al., “Hard mixtures of experts for large scale weakly
supervised vision,” in Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on. IEEE, 2017, pp. 5085–5093.

[17] X. Sun, X. Peng, F. Ren, and Y. Xue, “Human-machine conversation
based on hybrid neural network,” in Computational Science and Engi-
neering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017
IEEE International Conference on, vol. 1. IEEE, 2017, pp. 260–266.

[18] X. Wang, F. Yu, R. Wang, Y.-A. Ma, A. Mirhoseini, T. Darrell, and
J. E. Gonzalez, “Deep mixture of experts via shallow embedding,” arXiv
preprint arXiv:1806.01531, 2018.

[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, 1991.

[20] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” vol.
abs/1412.3555, 2014.

[21] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, 2017, pp. 5998–6008.

[23] H. Sedghi, M. Janzamin, and A. Anandkumar, “Provable tensor methods
for learning mixtures of classifiers,” arXiv preprint arXiv:1412.3046, 2014.

55

[24] Y. Sun, S. Ioannidis, and A. Montanari, “Learning mixtures of linear clas-
sifiers,” in Proceedings of the 31st International Conference on Machine
Learning, vol. 32, no. 2, 2014, pp. 721–729.

[25] X. Yi, C. Caramanis, and S. Sanghavi, “Solving a mixture of many random
linear equations by tensor decomposition and alternating minimization,”
arXiv preprint arXiv:1608.05749, 2016.

[26] K. Zhong, P. Jain, and I. S. Dhillon, “Mixed linear regression with
multiple components,” 2016, pp. 2190–2198.

[27] S. Balakrishnan, M. J. Wainwright, and B. Yu, “Statistical guarantees
for the EM algorithm: From population to sample-based analysis,” The
Annals of Statistics, vol. 45, no. 1, pp. 77–120, 2017.

[28] J. B. Kruskal, “Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics,”
Linear algebra and its applications, vol. 18, no. 2, pp. 95–138, 1977.

[29] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
EM algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[30] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor
decompositions for learning latent variable models,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 2773–2832, Jan. 2014.

[31] M. Janzamin, H. Sedghi, and A. Anandkumar, “Beating the perils of
non-convexity: Guaranteed training of neural networks using tensor
methods,” arXiv preprint arXiv:1506.08473, 2015.

[32] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with relu activation,” in Advances in Neural Information Processing
Systems, 2017, pp. 597–607.

[33] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural networks
with landscape design,” arXiv preprint arXiv:1711.00501, 2017.

[34] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon, “Recov-
ery guarantees for one-hidden-layer neural networks,” arXiv preprint
arXiv:1706.03175, 2017.

[35] S. S. Du, J. D. Lee, Y. Tian, B. Poczos, and A. Singh, “Gradient descent
learns one-hidden-layer cnn: Don’t be afraid of spurious local minima,”
arXiv preprint arXiv:1712.00779, 2017.

[36] I. Safran and O. Shamir, “Spurious local minima are common in two-layer
relu neural networks,” arXiv preprint arXiv:1712.08968, 2017.

56

[37] G. McLachlan and T. Krishnan, The EM algorithm and extensions. John
Wiley & Sons, 2007, vol. 382.

[38] V. Sharan and G. Valiant, “Orthogonalized ALS: A theoretically
principled tensor decomposition algorithm for practical use,” in
Proceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 70, 06–11 Aug 2017.
[Online]. Available: http://proceedings.mlr.press/v70/sharan17a.html
pp. 3095–3104.

[39] M. Janzamin, H. Sedghi, and A. Anandkumar, “Score function
features for discriminative learning: Matrix and tensor framework,” vol.
abs/1412.2863, 2014. [Online]. Available: http://arxiv.org/abs/1412.2863

[40] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Advances in neural information
processing systems, 2014, pp. 855–863.

[41] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural networks
with landscape design,” vol. abs/1711.00501, 2017. [Online]. Available:
http://arxiv.org/abs/1711.00501

[42] W. Gao, A. V. Makkuva, S. Oh, and P. Viswanath, “Learning
one-hidden-layer neural networks under general input distributions,”
in Proceedings of Machine Learning Research, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and M. Sugiyama,
Eds., vol. 89. PMLR, 16–18 Apr 2019. [Online]. Available:
http://proceedings.mlr.press/v89/gao19b.html pp. 1950–1959.

[43] A. V. Makkuva, S. Oh, S. Kannan, and P. Viswanath, “Breaking the
gridlock in mixture-of-experts: Consistent and efficient algorithms,” Inter-
national Conference on Machine Learning (ICML 2019), arXiv preprint
arXiv:1802.07417, 2019.

[44] H. Grad, “Note on n-dimensional hermite polynomials,” Communications
on Pure and Applied Mathematics, vol. 2, no. 4, pp. 325–330, 1949.

[45] B. Holmquist, “The d-variate vector hermite polynomial of order k,”
Linear algebra and its applications, vol. 237, pp. 155–190, 1996.

[46] Z. Ma, M. Xiao, Y. Xiao, Z. Pang, H. V. Poor, and B. Vucetic, “High-
reliability and low-latency wireless communication for internet of things:
challenges, fundamentals, and enabling technologies,” IEEE Internet of
Things Journal, vol. 6, no. 5, pp. 7946–7970, 2019.

[47] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general rein-
forcement learning algorithm that masters chess, shogi, and go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

57

http://proceedings.mlr.press/v70/sharan17a.html
http://arxiv.org/abs/1412.2863
http://arxiv.org/abs/1711.00501
http://proceedings.mlr.press/v89/gao19b.html

[48] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,
C. Qin, A. Žídek, A. W. Nelson, A. Bridgland et al., “Protein structure
prediction using multiple deep neural networks in the 13th critical as-
sessment of protein structure prediction (casp13),” Proteins: Structure,
Function, and Bioinformatics, vol. 87, no. 12, pp. 1141–1148, 2019.

[49] S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired method
for symbolic regression,” Science Advances, vol. 6, no. 16, p. eaay2631,
2020.

[50] M. Plotkin, “Binary codes with specified minimum distance,” IRE Trans-
actions on Information Theory, vol. 6, no. 4, pp. 445–450, 1960.

[51] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron, “Testing
reed-muller codes,” IEEE Transactions on Information Theory, vol. 51,
no. 11, pp. 4032–4039, 2005.

[52] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoǧlu, and
R. L. Urbanke, “Reed–muller codes achieve capacity on erasure channels,”
IEEE Transactions on information theory, vol. 63, no. 7, pp. 4298–4316,
2017.

[53] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of reed-
muller codes,” IEEE Transactions on Information Theory, vol. 66, no. 8,
pp. 4948–4965, 2020.

[54] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[55] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information
Theory, vol. 4, no. 4, pp. 38–49, 1954.

[56] E. Abbe, A. Shpilka, and M. Ye, “Reed-muller codes: Theory and
algorithms,” 2020.

[57] I. Dumer, “Recursive decoding and its performance for low-rate reed-
muller codes,” IEEE Transactions on Information Theory, vol. 50, no. 5,
pp. 811–823, 2004.

[58] I. Dumer, “Soft-decision decoding of reed-muller codes: a simplified
algorithm,” IEEE transactions on information theory, vol. 52, no. 3, pp.
954–963, 2006.

[59] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

58

[60] H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via
deep learning,” IEEE Journal on Selected Areas in Information Theory,
2020.

[61] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear codes,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp.
119–131, 2018.

[62] S. Dörner, S. Cammerer, J. Hoydis, and S. Ten Brink, “Deep learning
based communication over the air,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 132–143, 2017.

[63] I. Sason and S. Shamai, “Performance analysis of linear codes under
maximum-likelihood decoding: A tutorial,” 2006.

[64] T. Kaufman, S. Lovett, and E. Porat, “Weight distribution and list-
decoding size of reed–muller codes,” IEEE transactions on information
theory, vol. 58, no. 5, pp. 2689–2696, 2012.

[65] E. Abbe, A. Shpilka, and A. Wigderson, “Reed–muller codes for random
erasures and errors,” IEEE Transactions on Information Theory, vol. 61,
no. 10, pp. 5229–5252, 2015.

[66] O. Sberlo and A. Shpilka, “On the performance of reed-muller codes with
respect to random errors and erasures,” in Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2020,
pp. 1357–1376.

[67] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[68] I. Dumer and K. Shabunov, “Near-optimum decoding for subcodes of
reed-muller codes,” in Proceedings. 2001 IEEE International Symposium
on Information Theory. IEEE, 2001, p. 329.

[69] A. Lapidoth, “Nearest neighbor decoding for additive non-gaussian noise
channels,” IEEE Transactions on Information Theory, vol. 42, no. 5, pp.
1520–1529, 1996.

[70] M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and
V. Vukadinovic, “Channel coding for ultra-reliable low-latency communi-
cation in 5g systems,” in 2016 IEEE 84th vehicular technology conference
(VTC-Fall). IEEE, 2016, pp. 1–5.

[71] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Learn codes: Inventing low-latency codes via recurrent neural networks,”
IEEE Journal on Selected Areas in Information Theory, 2020.

59

[72] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” arXiv
preprint arXiv:1811.04918, 2018.

[73] C. Stein, “A bound for the error in the normal approximation to the
distribution of a sum of dependent random variables,” in Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 2. University of California Press, 1972, pp. 583–602.

[74] I.-C. Yeh, “Modeling of strength of high performance concrete
using artificial neural networks,” Cement and Concrete Research,
vol. 28, no. 12, pp. 1797–1808, 1998. [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

[75] Y.-C. Liu and I.-C. Yeh, “Using mixture design and neural networks
to build stock selection decision support systems,” Neural Computing
and Applications, vol. 28, no. 3, pp. 521–535, 2017. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance

[76] T. Brooks, D. Pope, and A. Marcolini., “Airfoil self-noise
and prediction,” NASA, Tech. Rep., 1989. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

[77] M. Ledoux and M. Talagrand, Probability in Banach Spaces: isoperimetry
and processes. Berlin: Springer, May 1991.

[78] A. W. Vaart and J. A. Wellner, Weak convergence and empirical processes:
with applications to statistics. Springer, 1996.

[79] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, 2013.

[80] M. V. Jamali, X. Liu, A. V. Makkuva, H. Mahdavifar, S. Oh, and
P. Viswanath, “Reed-Muller subcodes: Machine learning-aided design of
efficient soft recursive decoding,” arXiv preprint arXiv:2102.01671, 2021.

60

https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

Appendix A

Appendix for Chapter 2

Organization. The appendix is organized as follows:

• Appendix A.1 and Appendix A.1.1 contain the requisite material for
method of moments and the convergence analysis of EM respectively.

• Appendix A.2 details the class of non-linearities for which our results
hold.

• Appendix A.3 contains all the proofs of Section 2.4. Two technical
lemmas needed to prove Theorem 2 are relegated to Appendix A.7 and
Appendix A.8.

• Appendix A.11 provides convergence guarantees for Gradient EM.

• Appendix A.12 contains additional experiments for the comparison of
joint-EM and our algorithm for the synthetic data.

A.1 Toolbox for method of moments

In this section, we introduce the key techniques that are useful in parameter
estimation of mixture models via the method of moments.

Stein’s identity (Stein’s lemma) is a well-known result in probability and
statistics and is widely used in estimation and inference taks. A refined
version of the Stein’s lemma [73] for higher-order moments is the key to
parameter estimation in mixture of generalized linear models. We utilize this
machinery in proving Theorem 1. We first recall the Stein’s lemma.

Lemma 1 (Stein’s lemma [73]). Let x ∼ N (0, Id) and g : Rd → R be a
function such that both E[∇xg(x)] and E[g(x) · x] exist and are finite. Then

E[g(x) · x] = E[∇xg(x)].

61

The following lemma, which can be viewed as an extension of Stein’s
lemma for higher-order moments, is the central technique behind parameter
estimation in M-GLMs.

Lemma 2 ([23]). Let x ∼ N (0, Id) and S3(x) be as defined in Equation 2.6
and let S2(x) ≜ x ⊗ x − Id. Then for any g : Rd → R satisfying some
regularity conditions, we have

E[g(x) · S2(x)] = E[∇(2)
x g(x)], E[g(x) · S3(x)] = E[∇(3)

x g(x)].

A.1.1 Toolbox for EM convergence analysis

Recall that the domain of our gating parameters is Ω = {w : ∥w∥ ≤ 1}.
Then the population EM for the mixture of experts consists of the following
two steps:

• E-step: Using the current estimate wt to compute the function Q(·|wt).

• M-step: wt+1 = argmax∥w∥≤1Q(w|wt).

Thus the EM can be viewed as a deterministic procedure which maps wt 7→
M(wt) where

M(w) = argmaxw′∈ΩQ(w′|w).

Our convergence analysis relies on tools from [27] where they provided local
convergence results on both the EM and gradient EM algorithms. In particular,
they showed that if we initialize EM in a sufficiently small neighborhood
around the true parameters, the EM iterates converge geometrically to the
true parameters under some strong-concavity and gradient stability conditions.
We now formally state the assumptions in [27] under which the convergence
guarantees hold. We will show in the next section that these conditions hold
globally in our setting.

Assumption 1 (Convexity of the domain). Ω is convex.

Assumption 2 (Strong-concavity). Q(·|w∗) is a λ-strongly concave function
over a r-neighborhood of w∗, i.e. B(w∗, r) ≜ {w ∈ Ω : ∥w −w∗∥ ≤ r}.

62

Remark 2. An important point to note is that the true parameter w∗ is a
fixed point for the EM algorithm, i.e. M(w∗) = w∗. This is also known as
self-consistency of the EM algorithm. Hence it is reasonable to expect that in
a sufficiently small neighborhood around w∗ there exists a unique maximizer
for Q(·|w∗).

Assumption 3 (First-order stability condition). Assume that

∥∇Q(M(w)|w∗)−∇Q(M(w)|w)∥ ≤ γ∥w −w∗∥, ∀w ∈ B(w∗, r).

Remark 3. Intuitively, the gradient stability condition enforces the gradient
maps ∇Q(·|w) and ∇Q(·|w∗) to be close whenever w lies in a neighborhood
of w∗. This will ensure that the mapped output M(w) stays closer to w∗.

Theorem 7 (Theorem 1, [27]). If the above assumptions are met for some
radius r > 0 and 0 ≤ γ < λ, then the map w 7→ M(w) is contractive over
B(w∗, r), i.e.

∥M(w)−w∗∥ ≤
(γ
λ

)
∥w −w∗∥, ∀w ∈ B(w∗, r),

and consequently, the EM iterates {wt}t≥0 converge geometrically to w∗, i.e.

∥wt −w∗∥ ≤
(γ
λ

)t
∥w0 −w∗∥,

whenever the initialization w0 ∈ B(w∗, r).

A.2 Class of non-linearities

In this section, we characterize the class of non-linearities for which our
theoretical results for the recovery of regressors hold. Let Z ∼ N (0, 1) and
Y |Z ∼ N (g(Z), σ2), where g : R→ R. For (α, β, γ) ∈ R3, define

P3(y) ≜ Y 3 + αY 2 + βY,

S3(Z) = E[P3(y)|Z] = g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2) + ασ2,

63

and

S2(Y) ≜ Y 2 + γY, S2(Z) = E[S2(Y)|Z] = g(Z)2 + γg(Z) + σ2.

Condition 1. E[S ′
3(Z)] = E[S ′′

3 (Z)] = 0 and E[S ′′′
3 (Z)] ̸= 0.

Condition 2. E[S ′
2(Z)] = 0 and E[S ′′

2 (Z)] ̸= 0.

We are now ready to define the (α, β, γ)-valid class of non-linearities.

Definition 1. We say that the non-linearity g is (α, β, γ)-valid if there exists
(α, β, γ) ∈ R3 such that both Condition 3 and Condition 4 are satisfied.

We have that

S ′
3(Z) = 3g(Z)2g′(Z) + 2αg(Z)g′(Z) + g′(Z)(β + 3σ2)

= 2αg(Z)g′(Z) + βg′(Z) + 3g(Z)2g′(Z) + 3g′(Z)σ2,

S ′′
3 (Z) = 2α

(
g′(Z)2 + g(Z)g′′(Z)

)
+ βg′′(Z) + 3g′′(Z)(g(Z)2 + σ2) + 6g(Z)g′(Z)2.

Thus E[S ′
3(Z)] = E[S ′′

3 (Z)] = 0 implies that[
2E(g(Z)g′(Z)) E(g′(Z))

2E (g′(Z)2 + g(Z)g′′(Z)) E(g′′(Z))

][
α

β

]
=

[
−3E(g(Z)2g′(Z) + g′(Z)σ2)

−3E(g′′(Z)(g(Z)2 + σ2) + 2g(Z)g′(Z)2)

]

To ensure Condition 3, we need the pair (α, β) obtained by solving the above
linear equation to satisfy E[S ′′′

3 (Z)] ̸= 0. Similarly, E[S ′
2(Z)] = 0 implies that

γ =
−2E[g(Z)g′(Z)]

E[g′(Z)]
.

Thus Condition 4 stipulates that E[S ′′
2 (Z)] ̸= 0 with this choice of γ. It

turns out that these conditions hold for a wide class of non-linearities and in
particular, when g is either the identity function, or the sigmoid function, or
the ReLU. For these three choices of popular non-linearities, the values of the
tuple (α, β, γ) are provided below (which are obtained by solving the linear
equations mentioned above).

Example 1. If g is the identity mapping, then P3(y) = y3 − 3y(1 + σ2) and
S2(y) = y2.

64

Example 2. If g is the sigmoid function, i.e. g(z) = 1
1+e−z , then α and β can

be obtained by solving the following linear equation:[
0.2066 0.2066

0.0624 −0.0001

][
α

β

]
=

[
−0.1755− 0.6199σ2

−0.0936

]

The second-order transformation is given by S2(y) = y2 − y (since γ = −1
when g is sigmoid).

Example 3. If g is the ReLU function, i.e. g(z) = max{0, z}, then α =

−3
√

2
π
, β = 3

(
4
π
− σ2 − 1

)
and γ = −2

√
2
π
.

A.3 Proofs of Section 2.4

In this section, for the simplicity of the notation we denote the true parameters
as wi’s and ai’s dropping the ∗ sign.

A.4 Proof of Theorem 1 for k = 2

Proof. Suppose that g is the linear activation function. For k = 2, Equation 2.1
implies that

Py|x = f(w⊤x) · N (y|a⊤
1 x, σ

2) + (1− f(w⊤x)) · N (y|a⊤
2 x, σ

2), x ∼ N (0, Id),

(A.1)

where f(·) is the sigmoid function. Using the fact E[Z3] = µ3 + 3µσ2 for any
Gaussian random variable Z ∼ N (µ, σ2), we get

E[y3|x] = f(w⊤x)((a⊤
1 x)

3 + 3(a⊤
1 x)σ

2) + (1− f(w⊤x))((a⊤
1 x)

3 + 3(a⊤
1 x)σ

2).

Moreover,

E[y|x] = f(w⊤x)(a⊤
1 x) + (1− f(w⊤x))(a⊤

2 x).

65

Thus,

E[y3 − 3y(1 + σ2)|x] = f(w⊤x)((a⊤
1 x)

3 − 3(a⊤
1 x))

+ (1− f(w⊤x))((a⊤
1 x)

3 − 3(a⊤
1 x)).

If we define P3(y) ≜ y3 − 3y(1 + σ2), in view of Lemma 2 we get that

T3 = E[P3(y) · S3(x)] = E[(y3 − 3y(1 + σ2)) · S3(x)]

= E
[(
f(w⊤x)((a⊤

1 x)
3 − 3(a⊤

1 x))
)
· S3(x)

]
(A.2)

+ E
[(
1− f(w⊤x)((a⊤

2 x)
3 − 3(a⊤

2 x))
)
· S3(x)

]
= E

[
∇(3)

x

(
f(w⊤x)((a⊤

1 x)
3 − 3(a⊤

1 x))
)]

(A.3)

+ E
[
∇(3)

x

(
1− f(w⊤x)((a⊤

2 x)
3 − 3(a⊤

2 x))
)]

.

(A.4)

Using the chain rule for multi-derivatives, the first term simplifies to

E
[
∇(3)

x

(
f(w⊤x)((a⊤

1 x)
3 − 3(a⊤

1 x))
)]

= E[f ′′′((a⊤
1 x)

3 − 3(a⊤
1 x))] ·w ⊗w ⊗w

+E[f ′′(3(a⊤
1 x)

2 − 3)]·

(w ⊗w ⊗ a1 +w ⊗ a1 ⊗w

+a1 ⊗w ⊗w)+

E[f ′(6(a⊤
1 x))] · (a1 ⊗ a1 ⊗w + a1 ⊗w ⊗ a1 +w ⊗ a1 ⊗ a1)

+6E[f] · a1 ⊗ a1 ⊗ a1.

(A.5)

Since f(z) = 1
1+e−z , f ′(·), f ′′′(·) are even functions whereas f ′′(·) is an odd

function. Furthermore, both x 7→ (a⊤
1 x)

3 − 3(a⊤
1 x) and x 7→ a⊤

1 x are odd
functions whereas x 7→ 3(a⊤

1 x)
2 − 3 is an even function. Since x ∼ N (0, Id),

−x (d)
= x. Thus all the expectation terms in Equation A.5 equal zero except

for the last term since E[f(w⊤x)] = 1
2
> 0. We have,

E
[
∇(3)

x

(
f(w⊤x)((a⊤

1 x)
3 − 3(a⊤

1 x))
)]

= 3 · a1 ⊗ a1 ⊗ a1.

Similarly,

E
[
∇(3)

x

(
1− f(w⊤x)((a⊤

2 x)
3 − 3(a⊤

2 x))
)]

= 3 · a2 ⊗ a2 ⊗ a2.

66

Together, we have that

T3 = 3 · a1 ⊗ a1 ⊗ a1 + 3 · a2 ⊗ a2 ⊗ a2.

Now consider an arbitrary link function g belonging to the class of non-
linearities described in Appendix A.2. Then

Py|x = f(w⊤x) · N (y|g(a⊤
1 x), σ

2) + (1− f(w⊤x)) · N (y|g(a⊤
2 x), σ

2), x ∼ N (0, Id),

implies that

E[y3|x] = f(w⊤x)(g(a⊤
1 x)

3 + 3g(a⊤
1 x)σ

2) + (1− f(w⊤x))(g(a⊤
2 x)

3 + 3g(a⊤
2 x)σ

2),

and

E[y2|x] = f(w⊤x)(g(a⊤
1 x)

2 + σ2) + (1− f(w⊤x))(g(a⊤
2 x)

2 + σ2),

E[y|x] = f(w⊤x)g(a⊤
1 x) + (1− f(w⊤x))g(a⊤

2 x).

If we define P3(y) ≜ y3 + αy2 + βy, we have that

T3 = E[P3(y) · S3(x)]

= E[E[y3 + αy2 + βy|x] · S3(x)]

= E
[
f(w⊤x)

(
g(a⊤

1 x)
3 + αg(a⊤

1 x)
2 + g(a⊤

1 x)(β + 3σ2)
)
· S3(x)

]
+

E
[
(1− f(w⊤x))

(
g(a⊤

2 x)
3 + αg(a⊤

2 x)
2 + g(a⊤

2 x)(β + 3σ2)
)
· S3(x)

]
= E

[
∇(3)

x

(
f(w⊤x)

(
g(a⊤

1 x)
3 + αg(a⊤

1 x)
2 + g(a⊤

1 x)(β + 3σ2)
))]

+

E
[
∇(3)

x

(
f(w⊤x)

(
g(a⊤

2 x)
3 + αg(a⊤

2 x)
2 + g(a⊤

2 x)(β + 3σ2)
))]

(a)
= E[f]E

[
∇(3)

x

(
g(a⊤

1 x)
3 + αg(a⊤

1 x)
2 + g(a⊤

1 x)(β + 3σ2)
)]
· a1 ⊗ a1 ⊗ a1+

E[1− f]E
[
∇(3)

x

(
g(a⊤

2 x)
3 + αg(a⊤

2 x)
2 + g(a⊤

2 x)(β + 3σ2)
)]
· a2 ⊗ a2 ⊗ a2

= cg,σ (E[f] · a1 ⊗ a1 ⊗ a1 + E[1− f] · a2 ⊗ a2 ⊗ a2) ,

where (a) follows from the choice of α and β and the fact that w ⊥ {a1,a2},
and cg,σ ≜ E

[
(g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2))

′′′] where Z ∼ N (0, 1) . The
proof for T2 is similar.

67

A.5 Proof of Theorem 1 for general k

Proof. The proof for general k closely follows that of k = 2, described in
Appendix A.4. For the general k, we first prove the theorem when g is the
identity function, i.e.

Py|x =
∑
i∈[k]

Pi|xPy|x,i =
∑
i∈[k]

ew
⊤
i x∑

i∈[k] e
w⊤

i x
· N (y|a⊤

i x, σ
2), x ∼ N (0, Id).

Denoting Pi|x by pi(x), we have that

E[y3|x] =
∑
i∈[k]

pi(x)
(
(a⊤

i x)
3 + 3(a⊤

i x)σ
2
)
,

E[y|x] =
∑
i∈[k]

pi(x)(a
⊤
i x).

Hence

E[y3 − 3y(1 + σ2)|x] =
∑
i∈[k]

pi(x)
(
(a⊤

i x)
3 − 3(a⊤

i x)
)

If we let P3(y) ≜ y3 − 3y(1 + σ2), we get

E[P3(y) · S3(x)] =
∑
i∈[k]

E
[
∇(3)

x

(
pi(x)

(
(a⊤

i x)
3 − 3(a⊤

i x)
))]

Since x ∼ N (0, Id) and ai ⊥ span{w1, . . . ,wk−1}, we have that a⊤
i x ⊥

(w⊤
1 x, . . . ,w

⊤
k−1x). Moreover, E[(a⊤

i x)
3 − 3(a⊤

i x)] = E[(a⊤
i x)

2 − 1] =

E[a⊤
i x] = 0 for each i. Using the chain-rule for multi-derivatives, the above

equation thus simplifies to

E[P3(y) · S3(x)] =
∑
i∈[k]

E[pi(x)] · E
[
∇(3)

x

(
(a⊤

i x)
3 − 3(a⊤

i x)
)]

=
∑
i∈[k]

6E[pi(x)] · ai ⊗ ai × ai.

68

For a generic g : R→ R which is (α, β, γ)−valid, let P3(y) = y3 + αy2 + βy.
Then it is easy to see that the same proof goes through except for a change
in the coefficients of rank-1 terms, i.e.

E[P3(y) · S3(x)] =
∑
i∈[k]

αiE[pi(x)] · ai ⊗ ai ⊗ ai,

where αi ≜ E
[
(g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2))

′′′] where Z ∼ N (0, 1) and
′′′ denotes the third-derivative with respect to Z. Note that Condition 4
together with the fact that E[pi(x)] > 0 ensures that αi ≠ 0 and thus the
coefficients of the rank-1 terms are non-zero. The proof for T2 is similar.

A.6 Proof of Theorem 2

The following two lemmas are central to the proof of Theorem 2. Let A⊤ =

[a1| . . . |ak] ∈ Rd×k denote the matrix of regressor parameters whereas W⊤ =

[w1| . . . |wk−1] ∈ Rd×(k−1) denote the matrix of gating parameters. With a
slight change of notation, when A = A∗, we denote the EM operator M(W)

as either M(W ,A∗) or M(w), introduced in Section 2.4. For the general
case, we simply denote it by M(W ,A). In the following lemmas, we use
the norm ∥A∥ = maxi∈[k] ∥A⊤

i ∥2 where A ∈ Rk×d is a matrix of regressors,
similarly for any matrix of classifiers W ∈ R(k−1)×d.

Lemma 3 (Contraction of the EM operator). Under the assumptions of
Theorem 2, we have that

∥M(W ,A∗)−W ∗∥ ≤ κσ∥W −W ∗∥.

Moreover, W = W ∗ is a fixed point for M(W ,A∗).

Lemma 4 (Robustness of the EM operator). Let the matrix of regressors A

be such that maxi∈[k] ∥A⊤
i − (A∗

i)
⊤∥2 = σ2ε1. Then for any W ∈ Ω, we have

that

∥M(W ,A)−M(W ,A∗)∥ ≤ κε1,

where κ is a constant depending on g, k and σ. In particular, κ ≤ (k −
1)

√
6(2+σ2)

2
for g =linear, sigmoid and ReLU.

69

We are now ready to prove Theorem 2.

Proof. We first note that the EM iterates {W t}t≥1 evolve according to

W t = M(W t−1,A), t ≥ 1

Thus

∥W t −W ∗∥ = ∥M(W t−1,A)−W ∗∥ = ∥M(W t−1,A)−M(W ∗,A∗)∥

≤ ∥M(W t−1,A)−M(W t−1,A
∗)∥

+ ∥M(W t−1,A
∗)−W ∗∥

≤ kε1 + κσ∥W t−1 −W ∗∥,

where the last inequality follows from Lemma 7 and Lemma 8. Recursively
using the above inequality, we obtain that

∥W t −W ∗∥ ≤ (κσ)
t∥W 0 −W ∗∥+ κε1(1 + κσ + . . .+ κt−1

σ)

≤ (κσ)
t∥W 0 −W ∗∥+ κε1

1− κσ

.

A.7 Proof of Lemma 8

We need the following lemma which establishes the stability of the minimizers
for strongly convex functions under Lipschitz perturbations.

Lemma 5. Suppose Ω ⊆ Rd is a closed convex subset, f : Ω → R is a λ-
strongly convex function for some λ > 0 and B is an L-Lipschitz continuous
function on Ω. Let wf = argminw∈Ω f(w) and wf+B = argminw∈Ω f(w) +

B(w). Then

∥wf −wf+B∥ ≤
L

λ
.

70

Proof. Let w′ ∈ Ω be such that ∥w′ −wf∥ > L
λ
. Let wα = αwf + (1− α)w′

for 0 < α < 1. From the fact that wf is the minimizer of f on Ω and that f
is strongly convex, we have that

f(w′) ≥ f(wf) +
λ∥w′ −wf∥2

2
.

Furthermore, the strong-convexity of f implies that

f(wα) ≤ αf(wf) + (1− α)f(w′)− α(1− α)λ

2
∥w′ −wf∥2

= f(w′) + α(f(wf)− f(w′))− α(1− α)λ

2
∥w′ −wf∥2

≤ f(w′)− α
λ∥w′ −wf∥2

2
− α(1− α)λ

2
∥w′ −wf∥2

= f(w′)− λα
(
1− α

2

)
∥w′ −wf∥2 (A.6)

Since B is L-Lipschitz, we have

B(wα) ≤ B(w′) + Lα∥w′ −wf∥. (A.7)

Adding Equation A.6 and Equation A.7, we get

f(wα) +B(wα) ≤ f(w′) +B(w′) + Lα∥w′ −wf∥ − λα
(
1− α

2

)
∥w′ −wf∥2

= f(w′) +B(w′) + αλ∥w′ −wf∥
(
L

λ
−
(
1− α

2

)
∥w′ −wf∥

)
By the assumption that ∥w′−wf∥ > L

λ
, the term L

λ
−
(
1− α

2

)
∥w′−wf∥ will

be negative for sufficiently small α. This in turn implies that f(wα)+B(wα) <

f(w′) +B(w′) for such α. Consequently w′ is not a minimizer of f +B for
any w′ such that ∥w′ −wf∥ > L

λ
. The conclusion follows.

We are now ready to prove Lemma 8. Fix any W ∈ Ω and let A =

a
⊤
1

. . .

a⊤
k

 ∈
Rk×d be such that maxi∈[k] ∥ai − a∗

i ∥2 = σ2ε1 for some ε1 > 0. Let

W ′ = M(W ,A), (W ′)∗ = M(W ,A∗),

71

where,

M(W ,A) = arg max
W ′∈Ω

Q(W ′|W ,A),

and,

Q(W ′|W ,A) = E

 ∑
i∈[k−1]

p(i)(W ,A)((W ′
i)
⊤x)− log

1 +
∑

i∈[k−1]

e(W
′
i)

⊤x

 .

Here p(i)(A,W) ≜ pi(x)Ni∑
i∈[k] pi(x)Ni

denotes the posterior probability of choosing

the ith expert, where

pi(x) =
ew

⊤
i x

1 +
∑

k∈[k−1] e
w⊤

j x
, Ni ≜ N (y|g(a⊤

i x), σ
2), N∗

i = N (y|g((a∗
i)

⊤x), σ2).

Since both Q(·|W ,A) and Q(·|W ,A∗) are strongly concave functions over
Ω with some strong-concavity parameter λ, Lemma 5 implies that

∥M(W ,A)−M(W ,A∗)∥ ≤ L

λ
,

where L is the Lipschitz-constant for the function l(·) ≜ Q(·|W ,A) −
Q(·|W ,A∗). We have that

l(W ′) =
∑

i∈[k−1]

E[(p(i)(W ,A)− p(i)(W ,A∗)(W ′
i)
⊤x)]

Without loss of generality let i = 1. Since l(·) is linear in W ′, it suffices to
show for each i that

∥E[(p(1)(W ,A)− p(1)(W ,A∗)x]∥ ≤ L,

We show that L = κε1, or equivalently,

∥E[(p(1)(W ,A)− p(1)(W ,A∗)x]∥ ≤ κε1,

Let

At = A∗ + t∆, ∆ = A−A∗ ∈ Rk×d.

72

By hypothesis, we have that ∥∆i∥2 ≤ σ2ε1 for all i ∈ [k]. Thus in order to
show that

∥E[(p(1)(A,W)− p(1)(A∗,W))x]∥2 ≤ κε1,

it suffices to show that

⟨E[(p(1)(A,W)− p(1)(A∗,W))x], ∆̃⟩ ≤ κ∥∆/σ2∥2∥∆̃∥2, for all ∆̃ ∈ Rd.

Or equivalently,

E[(p(1)(A,W)− p(1)(A∗,W))⟨x, ∆̃⟩] ≤ κ∥∆/σ2∥2∥∆̃∥2.

We can rewrite the difference of the posteriors as

p(1)(A,W)− p(1)(A∗,W) =

∫ 1

0

d

dt
p(1)(A∗ + t∆,W)dt (A.8)

=
∑
i∈[k]

∫ 1

0

⟨∇ai
p(1)(At,W),∆i⟩dt. (A.9)

Since Ni = N (y|g(a⊤
i x), σ

2) = 1√
2πσ2

e−(y−g(a⊤
1 x))2/2σ2 , we have that

∇ai
Ni = Ni

(
y − g(a⊤

i x)

σ2

)
g′(a⊤

i x).

Thus,

∇ai
p(1)(At,W) = ∇ai

(
p1(x)N1∑
i∈[k] pi(x)Ni

)

=


(
∑

i ̸=1 pi(x)Ni)p1(x)N1

(
∑

i pi(x)Ni)2

(
y−g(a⊤

1 x)

σ2

)
g′(a⊤

1 x)x, if i = 1

−pi(x)p1(x)NiN1

(
∑

i pi(x)Ni)2

(
y−g(a⊤

i x)

σ2

)
g′(a⊤

i x)x, if i ̸= 1

73

Hence,

E[(p(1)(A,W)− p(1)(A∗,W))⟨x, ∆̃⟩]

(A.10)

=
∑
i∈[k]

∫ 1

0

E[⟨∇ai
p(1)(At,W),∆i⟩⟨x, ∆̃⟩]dt

(A.11)

=

∫ 1

0

E
[
(
∑

i ̸=1 pi(x)Ni)p1(x)N1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

1 x)

σ2

)
g′(a⊤

1 x)⟨x,∆1⟩⟨x, ∆̃⟩
]
dt

(A.12)

+
∑
i ̸=1

∫ 1

0

E
[
−pi(x)p1(x)NiN1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

i x)

σ2

)
g′(a⊤

i x)⟨x,∆i⟩⟨x, ∆̃⟩
]
dt,

(A.13)

where we denoted (ai)t by ai in the integrals above(with a slight abuse of
notation) for the sake of notational simplicity. For any i ̸= 1, we have that∣∣∣∣−pi(x)p1(x)NiN1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

i x)

σ2

)
g′(a⊤

i x)⟨x,∆i⟩⟨x, ∆̃⟩
∣∣∣∣

≤ pi(x)p1(x)NiN1

(p1(x)N1 + pi(x)Ni)2
|(y − g(a⊤

i x))g
′(a⊤

i x)⟨x,∆i/σ
2⟩⟨x, ∆̃⟩|

For g =linear, sigmoid and ReLU, we have that |g′(·)| ≤ 1. Moreover,
pi(x)p1(x)NiN1

(p1(x)N1+pi(x)Ni)2
≤ 1/4. Thus we have

pi(x)p1(x)NiN1

(p1(x)N1 + pi(x)Ni)2
|(y − g(a⊤

i x))g
′(a⊤

i x)⟨x,∆i/σ
2⟩⟨x, ∆̃⟩|

≤ 1

4
|y − g(a⊤

i x)||⟨x,∆i/σ
2⟩⟨x, ∆̃⟩|.

74

We thus get

E
[
−pi(x)p1(x)NiN1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

i x)

σ2

)
g′(a⊤

i x)⟨x,∆i⟩⟨x, ∆̃⟩
]

(A.14)

≤ 1

4
E[|y − g(a⊤

i x)||⟨x,∆i/σ
2⟩⟨x, ∆̃⟩|] (A.15)

≤ 1

4

√
E[(y − g(a⊤

i x))
2]E[⟨x,∆i/σ2⟩2⟨x, ∆̃⟩2] (A.16)

≤
√
3

4

√
E[(y − g(a⊤

i x))
2]∥∆i/σ

2∥2∥∆̃∥2 (A.17)

Now it remains to bound
√

E[(y − g(a⊤
i x))

2]. Since ∥ai∥2 ≤ 1, one can show
that E[g(a⊤

i x)
2] ≤ 1 for the given choice of non-linearities for g. Also, we

have that

E[y2] = E[E[y2|x]] = E[
∑
i∈[k]

p∗i (x)g(⟨a∗
i ,x⟩)2 + σ2]

= E[
∑
i∈[k]

p∗i (x)]E[g(⟨a∗
1,x⟩)2] + σ2 ≤ 1 + σ2,

where we used the following facts: (i) ⟨a∗
i ,x⟩ is independent of the random

variable p∗i (x) for each i ∈ [k], (ii) ⟨a∗
i ,x⟩

(d)
= ⟨a∗

1,x⟩ and (iii) E[g(⟨a∗
1,x⟩)2] ≤

1. Since E[(y − g(a⊤
i x))

2] ≤ 2E[y2] + E[g(a⊤
i x)

2], after substituting these
bounds in Equation A.17, we get

E
[
−pi(x)p1(x)NiN1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

i x)

σ2

)
g′(a⊤

i x)⟨x,∆i⟩⟨x, ∆̃⟩
]

≤
√

6(2 + σ2)

4
∥∆i/σ

2∥2∥∆̃∥2.

Similarly,

E
[
pi(x)Nip1(x)N1

(
∑

i pi(x)Ni)2

(
y − g(a⊤

1 x)

σ2

)
g′(a⊤

1 x)⟨x,∆1⟩⟨x, ∆̃⟩
]

≤
√
6(2 + σ2)

4
∥∆/σ2∥2∥∆̃∥2.

Substituting the above two inequalities in Equation A.13, we obtain that

E[(p(1)(A,W)− p(1)(A∗,W))⟨x, ∆̃⟩] ≤ 2(k − 1)

√
6(2 + σ2)

4
∥∆1/σ

2∥2∥∆̃∥2.

75

Defining κ ≜ (k − 1)

√
6(2+σ2)

2
and using the fact that ∥∆/σ2∥2 ≤ ε1, we thus

obtain

∥E[(p(1)(A,W)− p(1)(A∗,W))x]∥2 ≤ κε1.

A.8 Proof of Lemma 7

A.9 Proof for k = 2

Proof. We first prove the lemma for k = 2. We show that the assumptions in
Appendix A.1.1 hold globally in our setting yielding a geometric convergence.
Here we simply denote M(W ,A∗) as M(w) dropping the explicit dependence
on A∗. Recall that

Q(w|wt) = Epw∗ (x,y)

[
p1(x, y,wt) · (w⊤x)− log(1 + ew

⊤x)
]
,

where

p1(x, y,wt) =
f(w⊤

t x)N (y|g(a⊤
1 x), σ

2)

f(w⊤x)N (y|g(a⊤
1 x), σ

2) + (1− f(w⊤x))N (y|g(a⊤
2 x), σ

2)
.

(A.18)

For simplicity we drop the subscript in the above expectation with respect to
the distribution pw∗(x, y). Now we verify each of the assumptions.

• Convexity of Ω easily follows from its definition.

• We have that

Q(w|w∗) = E
[
p1(x, y,w

∗) · (w⊤x)− log(1 + ew
⊤x)
]
.

76

Note that the strong-concavity of Q(·|w∗) is equivalent to the strong-
convexity of −Q(·|w∗). Denoting the sigmoid function by f , we have
that for all w ∈ Ω,

−∇2Q(w|w∗) = E
[
f ′(w⊤x) · xx⊤] ,

(Stein’s lemma)
= E

[
f ′′′(w⊤x)

]
·ww⊤ + E[f ′(w⊤x)] · I

= E[f ′′′(∥w∥Z)] ·ww⊤ + E[f ′(∥w∥Z)] · I, Z ∼ N (0, 1)

(a)

≽ inf
0≤α≤1

min
{
E[f ′(αZ)],E[f ′(αZ)] + α2E[f ′′′(αZ)]

}
· I

= 0.14︸︷︷︸
λ

·I (A.19)

where (a) follows from finding the two possible eigenvalues of the positive-
definite matrix in the previous step and considering the minimum among
them to ensure strong-convexity. Here the value of λ is found numerically
to be approximately around 0.1442.

• For any w,wt ∈ Ω,

∇Q(w|wt) = E
[
p1(x, y,wt) · x− f(w⊤x) · x

]
.

Thus,

∥∇Q(M(w)|w∗)−∇Q(M(w)|w)∥ = ∥E [(p1(x, y,wt)− p1(x, y,w
∗) · x] ∥

(a)

≤ γσ∥w −w∗∥,

where we want to prove in (a) that γσ is smaller than 0.14 for all w ∈ Ω.
Intuitively, this means that the posterior probability in Equation A.18
is smooth with respect to the parameter w. We will now show that
this can be achieved in the high-SNR regime when σ is sufficiently
small. This will ensure that κσ ≜ γσ

λ
< 1. In particular, the value of

γσ is dimension-independent and depends only on the choice of the
non-linearity g.

To prove that

∥E [(p1(x, y,w)− p1(x, y,w
∗)) · x] ∥ ≤ γ∥w −w∗∥ = γ∥∆∥,

77

it suffices to show

⟨E [(p1(x, y,w)− p1(x, y,w
∗)) · x], ∆̃⟩ ≤ γ∥∆∥∥∆̃∥, ∀∆̃ ∈ Rd.

Or equivalently,

E
[
(p1(x, y,w)− p1(x, y,w

∗)) ⟨x, ∆̃⟩
]
≤ γ∥∆∥∥∆̃∥.

Let ∆ ≜ w −w∗ and f(u) ≜ p1(x, y,wu) where wu = w∗ + u∆, u ∈ [0, 1].
Thus f(1) = p1(x, y,w) and f(0) = p1(x, y,w

∗). So we get

p1(x, y,w)− p1(x, y,w
∗) = f(1)− f(0) =

∫ 1

0

f ′(u)du

=

∫ 1

0

⟨∇p1(x, y,wu),∆⟩du,

where the gradient is evaluated with respect to wu. Differentiating Equa-
tion A.18 with respect to w, we get that

∇wp1(x, y,w)

=
f(w⊤x)(1− f(w⊤x))N (y|g(a⊤

1 x), σ
2)N (y|g(a⊤

2 x), σ
2)

(f(w⊤x)N (y|g(a⊤
1 x), σ

2) + (1− f(w⊤x))N (y|g(a⊤
2 x), σ

2))2
· x

≜ R(x, y,w, σ) · x.

Thus,

E
[
(p1(x, y,w)− p1(x, y,w

∗)) ⟨x, ∆̃⟩
]

= E
[(∫ 1

0

R(x, y,wu, σ)⟨x,∆⟩du
)
⟨x, ∆̃⟩

]
=

∫ 1

0

E
[
R(x, y,wu, σ)⟨x,∆⟩⟨x, ∆̃⟩

]
du

≤
(∫ 1

0

√
E[R(x, y,wu, σ)2]du

)√
E
[
⟨x,∆⟩2⟨x, ∆̃⟩2

]
≤
√
3

(∫ 1

0

√
E[R(x, y,wu, σ)2]du

)
︸ ︷︷ ︸

γσ

∥∆∥∥∆̃∥

= γσ∥∆∥∥∆̃∥,

78

where the last inequality follows from Lemma 5 of [27]. Our goal is to now
prove that γσ → 0 as σ → 0. First observe that

R(x, y,w, σ) =
f(w⊤x)(1− f(w⊤x)e−(y−g(a⊤

1 x))/2σ2
e−(y−g(a⊤

1 x))/2σ2

(f(w⊤x)e−(y−g(a⊤
1 x))/2σ2

+ (1− f(w⊤x))e−(y−g(a⊤
2 x))/2σ2

)2

=
f(1− f)e

(y−g(a⊤
1 x))2−(y−g(a⊤

2 x))2

2σ2(
f + (1− f)e

(y−g(a⊤
1 x))2−(y−g(a⊤

2 x))2

2σ2

)2 ≤ 1/4

→ 0 as σ → 0,

where the key observation is that irrespective of the sign of (y − g(a⊤
1 x))

2 −
(y−g(a⊤

2 x))
2, the ratio still goes to zero and hence by dominated convergence

theorem E[R(x, y,wu, σ)
2] → 0 for each u ∈ [0, 1]. Now we show that this

convergence is uniform in u and thus γσ → 0. For simplicity, define

∆1 ≜ (y − g(a⊤
1 x))

2, ∆2 ≜ (y − g(a⊤
2 x))

2 and σ =
1

n
. (A.20)

Thus,

R(x, y,wu, σ) =
f(1− f)e

n2

2
(∆1−∆2)(

f + (1− f)e
n2

2
(∆1−∆2)

)2 (A.21)

≤ f(1− f)e
n2

2
(∆1−∆2)(

(1− f)e
n2

2
(∆1−∆2)

)2 =
f

1− f
e−

n2

2
(∆1−∆2). (A.22)

Similarly,

R(x, y,wu, σ) ≤
1− f

f
e−

n2

2
(∆2−∆1). (A.23)

Thus, we get

R(x, y,wu, σ) ≤ max

(
1− f

f
,

f

1− f

)
e−

n2

2
(|∆1−∆2|). (A.24)

79

Hence

γσ√
3
=

∫ 1

0

√
E[Ratio(x, y,wu, σ)2]du (A.25)

≤
∫ 1

0

√√√√E

[
max

(
1− f

f
,

f

1− f

)2

e−n2|∆1−∆2|

]
du (A.26)

≤
∫ 1

0

√√√√E

[(
1− f

f

)2

e−n2|∆1−∆2| +

(
f

1− f

)2

e−n2|∆1−∆2|

]
du (A.27)

=

∫ 1

0

√
2E
[
e2w⊤

u xe−n2|∆1−∆2|
]
du (A.28)

≤
∫ 1

0

√
2
√

E[e4w⊤
u x]E[e−2n2|∆1−∆2|]du (A.29)

(a)

≤
√

2e4
√

E[e−2n2|∆1−∆2|], (A.30)

where (a) follows from the fact ∥wu∥ ≤ 1 and E[e4w⊤
u x] = e8∥wu∥2 ≤ e8,

for each u ∈ [0, 1]. Now we analyze the convergence rate of the last term
E[e−2n2|∆1−∆2|] for the case of linear regression, i.e. g(z) = z. Notice that for
the two-mixtures, we have

y
(d)
= Z(a⊤

1 x) + (1− Z)a⊤
2 x+ σN = Z(a⊤

1 x) + (1− Z)a⊤
2 x+

N

n
,

(A.31)

Z|x ∼ Bern(f(w⊤
∗ x)). (A.32)

Thus,

∆1 −∆2
(d)
= (y − a⊤

1 x)
2 − (y − a⊤

2 x)
2 (A.33)

= (a⊤
1 x− a⊤

2 x)
2(1− 2Z) +

2N

n
(a⊤

2 x− a⊤
1 x) (A.34)

= ⟨x,v⟩2(1− 2Z) +
2N

n
⟨x,v⟩, v = a1 − a2. (A.35)

80

Since Z can equal either 0 or 1, we have

γσ ≤
√
3
√
2e4
(
E[e−2n2|⟨x,v⟩2(1−2Z)+ 2N

n
⟨x,v⟩|]

)1/4
(A.36)

≤
√
6e4
(
E
[
max

(
e−2n2|⟨x,v⟩2+ 2N

n
⟨x,v⟩|, e−2n2|−⟨x,v⟩2+ 2N

n
⟨x,v⟩|

)])1/4
(A.37)

≤
√

6
√
2e4
(
E
[
e−2n2|⟨x,v⟩2+ 2N

n
⟨x,v⟩|

])1/4
(A.38)

=

√
6
√
2e4
(
E
[
e−2n2|Z2+ 2ZN

n
|
])1/4

, Z ∼ N (0, ∥a1 − a2∥), N ∼ N (0, 1).

(A.39)

= O

(√
6
√
2e4
(
E[e−2n2Z2

]
)1/4)

(A.40)

=

√
6
√
2e4

(√
1

4n2∥a1 − a2∥2 + 1

)1/4

(A.41)

= O

(
1

(n∥a1 − a2∥)1/4

)
(A.42)

= O

((
σ

∥a1 − a2∥

)1/4
)
. (A.43)

A.10 Proof for general k

Proof. The proof strategy for general k is similar. First let ε1 = 0. Our
task is to show that the assumptions of Appendix A.1.1 hold globally in our
setting. The domain Ω is clearly convex since

Ω = {w = (w1, . . . ,wk−1) : ∥wi∥ ≤ 1, ∀i ∈ [k − 1]} .

Now we verify Assumption 2. The function Q(.|wt) is given by

Q(w|wt) = E

 ∑
i∈[k−1]

p(i)wt
(w⊤

i x)− log

1 +
∑

i∈[k−1]

ew
⊤
i x

 ,

81

where p
(i)
wt ≜ P (z = i|x, y,wt) corresponds to the posterior probability for

the ith expert, given by

p(i)wt
=

pi,t(x)N (y|g(a⊤
i x), σ

2)∑
j∈[k] pj,t(x)N (y|g(a⊤

j x), σ
2)
, pi,t(x) =

e(wt)⊤i x

1 +
∑

j∈[k−1] e
(wt)⊤j x

.

Throughout we follow the convention that wk = 0. Thus the gradient of Q
with respect to the ith gating parameter wi is given by

∇wi
Q(w|wt) = E

[(
p(i)wt
− ew

⊤
i x

1 +
∑

j∈[k−1] e
w⊤

j x

)
· x

]
, i ∈ [k − 1].

Thus the (i, j)th block of the negative Hessian −∇(2)
w Q(w|w∗) ∈ Rd(k−1)×d(k−1)

is given by

−∇wi,wj
Q(w|w∗) =

E[pi(x)(1− pi(x)) · xx⊤], j = i

E[−pi(x)pj(x) · xx⊤], j ̸= i
, (A.44)

where pi(x) = ew
⊤
i x

1+
∑

j∈[k−1]e
w⊤

j
x

. It is clear from Equation A.44 that−∇(2)
w Q(w|w∗)

is positive semi-definite. Since we are interested in the strong convexity of
−Q(·|w∗) which is equivalent to positive definiteness of the negative Hessian,
it suffices to show that

λ ≜ inf
w∈Ω

λmin

(
−∇(2)

w Q(w|w∗)
)
> 0.

Since the Hessian is continuous with respect to w and consequently the
minimum eigenvalue of it, there exists a w′ ∈ Ω such that

λ = λmin

(
−∇(2)

w′Q(w′|w∗)
)
= inf

∥a∥=1
a⊤
(
−∇(2)

w′Q(w′|w∗)
)
a,

where a = (a⊤
1 , . . . ,a

⊤
k−1)

⊤ ∈ Rd(k−1). In view of Equation A.44, the above
equation can be further simplified to

λ = inf
∥a∥=1

E[a⊤
xMxax], (A.45)

82

where ax = (a⊤
1 x, . . . ,a

⊤
k−1x)

⊤ ∈ Rk−1 and Mx is given by

Mx(i, j) =

pi(x)(1− pi(x)), i = j

−pi(x)pj(x), i ̸= j

Let the infimum in Equation A.45 is attained by a∗, i.e. λ = E[(a∗
x)

⊤Mxa
∗
x].

For each x, Mx is strictly diagonally dominant since |Mx(i, i)| = pi(x)(1−
pi(x)) = pi(x)

(∑
j ̸=i,j∈[k] pj(x)

)
> pi(x)

(∑
j ̸=i,j∈[k−1] pj(x)

)
=
∑

j ̸=i M(i, j).
Thus Mx is positive-definite and (a∗

x)
⊤Mxa

∗
x > 0 whenever a∗

x ̸= 0. Since x

follows a continuous distribution it follows that a∗
x ≠ 0 with probability 1

and thus λ = E[(a∗
x)

⊤Mxa
∗
x] > 0.

Now it remains to show that Assumption 3 too holds, i.e.

∥∇Q(M(w)|w∗)−∇Q(M(w)|w)∥ ≤ γ∥w −w∗∥.

Note that w = (w⊤
1 , . . . ,w

⊤
k−1)

⊤ ∈ Rd(k−1). We will show that

∥(∇Q(M(w)|w∗))i − (∇Q(M(w)|w))i∥ ≤ γσ∥w −w∗∥, i ∈ [k − 1],

where (∇Q(M(w)|w))i ∈ Rd refers to the ith block of the gradient and γσ → 0.
Observe that

(∇Q(M(w)|w∗))i − (∇Q(M(w)|w))i = E
[
(p(i)w − p

(i)
w∗) · x

]
Let ∆ = w − w∗ and correspondingly ∆ = (∆⊤

1 , . . . ,∆
⊤
k−1)

⊤ where ∆i =

wi −w∗
i . Thus it suffices to show that

∥E[(p(i)w − p
(i)
w∗) · x]∥ ≤ γσ∥∆∥.

Or equivalently,

E[(p(i)w − p
(i)
w∗)⟨x, ∆̃⟩] ≤ γσ∥∆∥∥∆̃∥, ∀∆̃ ∈ Rd.

83

We consider the case i = 1. The proof for the other cases is similar. Recall
that

p(1)w =
p1(x)N (y|g(a⊤

1 x), σ
2)∑

j∈[k] pj(x)N (y|g(a⊤
j x), σ

2)
, pi(x) =

ew
⊤
i x

1 +
∑

j∈[k−1] e
w⊤

j x
, i ∈ [k − 1].

For simplicity we define Ni = N (y|g(a⊤
1 x), σ

2). It is straightforward to verify
that

∇wj
pi(x) =

pi(x)(1− pi(x)) · x, j = i

−pi(x)pj(x) · x, j ̸= i

Thus

∇w1(p
(1)
w) = ∇w1

(
p1(x)N1∑N
i=1 pi(x)Ni

)

=
x(∑N

i=1 pi(x)Ni

)2 ((N∑
i=1

pi(x)Ni)p1(x)(1− p1(x))N1

− p1(x)N1(−
∑
j ̸=1

pj(x)p1(x)Nj + p1(x)(1− p1(x))N1))

=
p1(x)N1

(∑
j≥2 pj(x)Nj

)
(∑N

i=1 pi(x)Ni

)2 · x

≜ R1(x, y,w, σ) · x

Similarly,

∇wi
(p(1)w) =

p1(x)pi(x)N1Ni(∑N
i=1 pi(x)Ni

)2 · x, i ̸= 1,

≜ Ri(x, y,w, σ) · x.

84

Let wu ≜ w∗ + u∆, u ∈ [0, 1] and f(u) ≜ p
(1)
wu . Thus

p(1)w − p
(1)
w∗ = f(1)− f(0) =

∫ 1

0

f ′(u)du

=

∫ 1

0

 ∑
i∈[k−1]

⟨∇wi
(p(1)wu

),∆i⟩

 du

=
∑

i∈[k−1]

∫ 1

0

Ri(x, y,w, σ)⟨x,∆i⟩du.

So we get

E[(p(1)w − p
(1)
w∗)⟨x, ∆̃⟩] =

∑
i∈[k−1]

∫ 1

0

E[Ri(x, y,wu, σ)⟨x,∆i⟩⟨x, ∆̃⟩]du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]E[⟨x,∆i⟩2⟨x, ∆̃⟩2]du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]

(√
3∥∆i∥∥∆̃∥

)
du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]

(√
3∥∆∥∥∆̃∥

)
du

=

 ∑
i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]du


︸ ︷︷ ︸

γ
(1)
σ

(√
3∥∆∥∥∆̃∥

)

Now our goal is to show that E[Ri(x, y,wu, σ)
2]→ 0 as σ → 0. For i = 1, we

have

R1(x, y,wu, σ)
2 =

∑j≥2 p1(x)pj(x)N1Nj(∑N
i=1 pi(x)Ni

)2


2

≤ k
∑
j≥2

 p1(x)pj(x)N1Nj(∑N
i=1 pi(x)Ni

)2


2

≤ k
∑
j≥2

(
p1(x)pj(x)N1Nj

(p1(x)N1 + pj(x)Nj)2

)2

Similarly,

Ri(x, y,wu, σ)
2 ≤

(
p1(x)pi(x)N1Ni

(p1(x)N1 + pi(x)Ni)2

)2

, ∀i ̸= 1, i ∈ [k − 1].

85

For w = wu and i ̸= 1, we have that

p1(x)pi(x)N1Ni

(p1(x)N1 + pi(x)Ni)2
=

ew
⊤
1 xew

⊤
i xe−

(y−g(a⊤
1 x))2

2σ2 e−
(y−g(a⊤

i x))2

2σ2(
ew

⊤
1 xe−

(y−g(a⊤
1 x))2

2σ2 + ew
⊤
i xe−

(y−g(a⊤
i

x))2

2σ2

)2 ≤
1

4

=
ew

⊤
1 xew

⊤
i xe

(y−g(a⊤
1 x))2−(y−g(a⊤

i x))2

2σ2(
ew

⊤
1 x + ew

⊤
i xe

(y−g(a⊤
1 x))2−(y−g(a⊤

i
x))2

2σ2

)2

σ→0−−→ 0.

Thus, by Dominated Convergence Theorem, E[Ri(x, y,wu, σ)
2]→ 0 for each

u ∈ [0, 1]. To show that
∫ 1

0
E[Ri(x, y,wu, σ)

2]du → 0, we can now follow
the same analysis as in the proof of Theorem 2 from Equation A.20 on-
wards (replacing w there with w1 −wi) which ensures that γ

(1)
σ in our case

converges to zero. Similarly for other i ∈ [k− 1], we get that γ(i) → 0. Taking
γσ = γ

(1)
σ + . . .+ γ

(k−1)
σ and κσ = γσ

λ
completes the proof.

A.11 Gradient EM algorithm

In this section, we provide the convergence guarantees for the gradient EM
algorithm. For simplicity, we prove the results for k = 2 and (a1,a2) =

(a∗
1,a

∗
2). Thus we want to learn the gating parameter w∗ in this setting.

The results for the general case follow essentially the same proof as that of
Theorem 2. In particular, our Theorem 8 can be viewed as a generalization of
Lemma 7. Together with Lemma 8, extension to general k is straightforward.

Note that in the M-step of the EM algorithm, instead of maximizing
Q(·|wt), we can chose an iterate so that it increases the Q value instead of
fully maximizing it, i.e. Q(wt+1|wt) ≥ Q(wt|wt). Such a procedure is termed
as generalized EM. Gradient EM is an example of generalized EM in which
we take an ascent step in the direction of the gradient of Q(·|wt) to produce
the next iterate, i.e.

wt+1 = wt + α∇Q(wt|wt),

86

where α > 0 is a suitably chosen step size and the gradient is with respect
to the first argument. To account for the constrained optimization, we can
include a projection step. Mathematically,

wt+1 = G(wt), G(w) = ΠΩ(w + α∇Q(w|)w),

where ΠΩ refers to the projection operator. Our next result establishes that
the iterates of the gradient EM algorithm too converge geometrically for an
appropriately chosen step size α.

Theorem 8. Suppose that the domain Ω = {w ∈ Rd : ∥w∥2 ≤ 1} and
(a1,a2) = (a∗

1,a
∗
2). Then there exist constants α0 > 0 and σ0 > 0 such that

for any step size 0 < α ≤ α0 and noise variance σ < σ0, the gradient EM
updates on the gating parameter {w}t≥0 converge geometrically to the true
parameter w∗, i.e.

∥wt −w∗∥ ≤ (ρσ)
t ∥w0 −w∗∥,

where ρσ is a dimension-independent constant depending on g and σ.

Remark 4. The condition σ < σ0 ensures that the Lipschitz constant ρσ

for the map G is strictly less than 1. The constant α0 depends only on
two universal constants which are nothing but the strong-concavity and the
smoothness parameters for the function Q(·|w∗).

Proof. In addition to the assumptions of Appendix A.1.1, if we can ensure
that the map −Q(·|w∗) is µ-smooth, then the proof follows from Theorem 3

of [27] if we choose α0 =
2

µ+λ
where λ is the strong-convexity parameter of

−Q(·|w∗). The strong-convexity is already established in Appendix A.6. To
find the smoothness parameter, note that

−∇2Q(w|w∗) = E
[
f ′(w⊤x) · xx⊤] ,

= E
[
f ′′′(w⊤x)

]
·ww⊤ + E[f ′(w⊤x)] · I

= E[f ′′′(∥w∥Z)] ·ww⊤ + E[f ′(∥w∥Z)] · I, Z ∼ N (0, 1)

⪯ sup
0≤α≤1

min
{
E[f ′(αZ)],E[f ′(αZ)] + α2E[f ′′′(αZ)]

}
· I

= 0.25︸︷︷︸
µ

·I.

87

The contraction parameter is then given by

ρσ = 1− 2λ+ 2γσ
µ+ λ

.

Since γσ
σ→0−−→ 0, ρσ < 1 whenever σ < σ0 for a constant σ0.

A.12 Additional experiments

A.12.1 Synthetic data

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

P
a

ra
m

e
te

r
e

s
ti
m

a
ti
o

n
 e

rr
o

r

Spectral+EM

EM

(a)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
a

ra
m

e
te

r
e

s
ti
m

a
ti
o

n
 e

rr
o

r

Spectral+EM

EM

(b)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a

ra
m

e
te

r
e

s
ti
m

a
ti
o

n
 e

rr
o

r

Spectral+EM

EM

(c)

Figure A.1: Plot of parameter estimation error with varying number of
samples(n): (a) n = 1000 (b) n = 5000. (c) n = 10000.

In Figure A.1, we varied the number of samples our data set and fixed the
other set of parameters to k = 3, d = 5, σ = 0.5.

In Figure A.2 we repeated our experiments for the choice of n = 10000, d =

5, k = 3 for two different popular choices of non-linearities: sigmoid and ReLU.
The same conclusion as in the linear setting holds in this case too with our
algorithm outperforming the EM consistently.

88

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a

ra
m

e
te

r
e

s
ti
m

a
ti
o

n
 e

rr
o

r

Spectral+EM

EM

(a)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a

ra
m

e
te

r
e

s
ti
m

a
ti
o

n
 e

rr
o

r

Spectral+EM

EM

(b)

Figure A.2: Parameter estimation error for the sigmoid and ReLU
nonlinearities respectively.

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

P
re

di
ct

io
n

er
ro

r

Spectral+EM
EM
Constant estimator

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.056

0.057

0.058

0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

P
re

d
ic

ti
o

n
 e

rr
o

r

Spectral+EM

EM

Constant estimator

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
re

d
ic

ti
o

n
 e

rr
o

r

Spectral+EM

EM

Constant estimator

Figure A.3: Prediction error for the concrete, stock portfolio and the airfoil
data sets respectively.

89

A.12.2 Real data

For real data experiments, we choose the three standard regression data sets
from the UCI Machine Learning Repository: Concrete Compressive Strength
Data Set, Stock portfolio performance Data Set, and Airfoil Self-Noise Data
Set [74–76]. In all the three tasks, the goal is to predict the outcome or
the response y for each input x, which typically contains some task specific
attributes. For example, in the concrete compressive strength, the task is to
predict the compressive strength of the concrete given its various attributes
such as the component of cement, water, age, etc. For this data, the input
x ∈ R8 corresponds to eight different attributes of the concrete and the
output y ∈ R corresponds to its concrete strength. Similarly, for the stock
portfolio data set the input x ∈ R6 contains the weights of several stock-
picking concepts such as weight of the Large S/P concept, weight of the Small
systematic Risk concept, etc,. and the output y is the corresponding excess
return. The airfoil data set is obtained from a series of aerodynamic and
acoustic tests of two and three-dimensional airfoil blade sections and the goal
is predict the scaled sound pressure level (in dB) given the frequency, angle
of attack, etc,. For all the tasks, we pre-processed the data by whitening the
input and scaling the output to lie in (−1, 1). We randomly allotted 75% of
the data samples for training and the rest for testing. Our evaluation metric
is the prediction error on the test set (xi, yi)

n
i=1 defined as

E =
1

n

n∑
i=1

(ŷi − yi)
2,

where ŷi corresponds to the predicted output response using the learned
parameters. In other words,

ŷ =
∑
i∈[k]

eŵ
⊤
i x∑

j∈[k] e
ŵ⊤

j x
· g(â⊤

i x).

90

We ran the joint-EM algorithm (with 10 different trails) on these tasks with var-
ious choices for k ∈ {2, . . . , 10}, σ ∈ {0.1, 0.4, 0.8, 1}, g ∈ {linear, sigmoid,ReLU}
and found the best hyper-parameters to be (k = 3, σ = 0.1 and g = linear),
(k = 3, σ = 0.4, g = sigmoid) and (k = 3, σ = 0.1, g = linear) for the three
datasets respectively. For this choice of best hyper-parameters found for joint-
EM, we ran our algorithm. Figure A.3 highlights the predictive performance
of our algorithm as compared to that of the EM. We also plotted the variance
of the test data for reference and to gauge the performance of our algorithm.
In all the settings our algorithm is able to obtain a better set of parameters
resulting in smaller prediction error.

91

Appendix B

Appendix for Chapter 3

B.1 Valid class of non-linearities

We slightly modify the class of non-linearities from [43] for our theoretical
results in Chapter 3. The only key modification is that we use a fourth-
order derivative based conditions, as opposed to third-order derivatives used
in the above work. Following their notation, let Z ∼ N (0, 1) and Y |Z ∼
N (g(Z), σ2), where g : R→ R. For (α, β, γ, δ) ∈ R4, define

Q4(y) ≜ Y 4 + αY 3 + βY 2 + γY,

where

S4(Z) ≜ E[Q4(y)|Z]

= g(Z)4 + 6g(Z)2σ2 + σ4 + α(g(Z)3 + 3g(Z)σ2) + β(g(Z)2 + σ2) + γg(Z).

Similarly, define

Q2(y) ≜ Y 2 + δY, S2(Z) = E[Q2(y)|Z] = g(Z)2 + δg(Z) + σ2.

Condition 3. E[S ′
4(Z)] = E[S ′′

4 (Z)] = E[S ′′′
4 (Z)] = 0 and E[S ′′′′

4 (Z)] ̸= 0. Or
equivalently, in view of Stein’s lemma [73],

E[S4(Z)Z] = E[S4(Z)(Z2 − 1)] = E[S4(Z)(Z3 − 3Z)] = 0,

E[S4(Z)(Z4 − 6Z2 + 3)] ̸= 0.

92

Condition 4. E[S ′
2(Z)] = 0 and E[S ′′

2 (Z)] ̸= 0. Or equivalently,

E[S2(Z)Z] = 0 and E[S2(Z)(Z2 − 1)] ̸= 0.

Definition 2. We say that the non-linearity g is (α, β, γ, δ)− valid if there
exists a tuple (α, β, γ, δ) ∈ R4 such that both Condition 3 and Condition 4 are
satisfied.

While these conditions might seem restrictive at first, all the widely used
non-linearities such as Id, ReLU, leaky-ReLU, sigmoid, etc. belong to this.
For some of these non-linear activations, we provide the pre-computed trans-
formations below:

Example 4. If g = Id, then S3(y) = y4 − 6y2(1 + σ2) and Q2(y) = y2.

Example 5. If g = ReLU, i.e. g(z) = max{0, z}, we have that for any
p, q ∈ N,

E[g(Z)pZq] =

∫ ∞

0

zp+q

(
1√
2π

e−z2/2

)
dz =

1

2
E[|Z|p+q]

=
(p+ q − 1)!!

2


√

2
π

if p+ q is odd

1 if p+ q is even
.

Substituting these moments in the linear set of equations E[S4(Z)Z] =
E[S4(Z)(Z2 − 1)] = E[S4(Z)(Z3 − 3Z)] = 0, we obtain

1.5 + 1.5σ2
√

2
π
+ σ2 0.5

3
√

2
π
(1 + σ2/2) 1 + σ2 1

2

√
2
π

3
√

2
π
+ σ2 0


αβ
γ

 = −


√

2
π
(4 + 6σ2))

6 + 6σ2√
2
π
(12 + 6σ2)

 .

Solving for (α, β, γ) will yield S4(Z). Finally, we have that δ = −2
√

2
π
.

93

B.2 Proofs of Section 3.2.1

Remark 5. To choose the parameters in Theorem 3, we follow the pa-
rameter choices from [41]. Let c be a sufficiently small universal con-
stant (e.g. c = 0.01). Assume µ ≤ c/κ∗, and λ ≥ 1/(ca∗min). Let τ0 =

cmin {µ/(κda∗max), λ}σmin(M). Let δ ≤ min
{

cε0
a∗max·m

√
dκ1/2(M)

, τ0/2
}

and

ε = min
{
λσmin(M)1/2, cδ/

√
∥M∥, cε0δσmin(M)

}
.

For any k × d matrix A, let A† be its pseudo inverse such that AA† =

Ik×k and A†A is the projection matrix to the row span of A. Let α∗
i ≜

E[p∗i (x)], a∗i = 1
α∗
i

and κ∗ = α∗
max

α∗
min

. Let M =
∑

i∈[k] α
∗
ia

∗
i (a

∗
i)

⊤, κ(M) =
∥M∥

σmin(M)
.

For the sake of clarity, we now formally state our main assumptions, adapted
from [43]:

1. x follows a standard Gaussian distribution, i.e. x ∼ N (0, Id).

2. ∥a∗
i ∥ = 1 for all i ∈ [k] and ∥w∗

i ∥ ≤ R for all i ∈ [k − 1].

3. The regressors a∗
1, . . . ,a

∗
k are linearly independent and the classifiers

{w∗
i }i∈[k−1] are orthogonal to the span S = span {a∗

1, . . . ,a
∗
k}, and

2k − 1 < d.

4. The non-linearity g : R → R is (α, β, γ, δ)− valid, which we define in
Appendix B.1.

Note that while the first three assumptions are same as that of [43], the
fourth assumption is slightly different from theirs. Under this assumptions,
we first give an alternative characterization of L4(·) in the following theorem
which would be crucial for the proof of Theorem 3.

Theorem 9. The function L(·) defined in Equation 3.2 satisfies that

L4(A) =
∑
m∈[k]

E[p∗m(x)]
∑
i ̸=j

i,j∈[k]

⟨a∗
m,ai⟩2⟨a∗

m,aj⟩2 − µ
∑

m,i∈[k]

E[p∗m(x)]⟨a∗
m,ai⟩4

+λ
∑
i∈[k]

(
∑
m∈[k]

E[p∗m(x)]⟨a∗
m,ai⟩2 − 1)2 +

δ

2
∥A∥2F

94

B.2.1 Proof of Theorem 9

Proof. For the proof of Theorem 9, we use the notion of score functions
defined as [39]:

Sm(x) ≜ (−1)m∇
(m)
x f(x)

f(x)
, f is the pdf of x. (B.1)

In this paper we focus on m = 2, 4. When x ∼ N (0, Id), we know that
S2(x) = x⊗ x− I and

S4(x) = x⊗4 −
∑
i∈[d]

sym (x⊗ ei ⊗ ei ⊗ x) +
∑
i,j

sym (ei ⊗ ei ⊗ ej ⊗ ej) .

The score transformations S4(x) and S2(x) can be viewed as multi-variate
polynomials in x of degrees four and two respectively. For the output y,
recall the transforms Q4(y) and Q2(y) defined in Section 3.2.1. The following
lemma shows that one can construct a fourth-order super symmetric tensor
using these special transforms.

Lemma 6 (Super symmetric tensor construction). Let (x, y) be generated
according to Equation 2.1 and Assumptions (1)-(4) hold. Then

T4 ≜ E[Q4(y) · S4(x)] = cg,σ
∑
i∈[k]

E[p∗i (x)] · a∗
i ⊗ a∗

i ⊗ a∗
i ⊗ a∗

i ,

T2 ≜ E[Q2(y) · S2(x)] = c′g,σ
∑
i∈[k]

E[p∗i (x)] · a∗
i ⊗ a∗

i ,

where p∗i (x) = P (zi = 1|x), cg,σ and c′g,σ are two non-zero constants depending
on g and σ.

Now the proof of the theorem immediately follows from Lemma 6. Recall
from Equation 3.2 that

L4(A) ≜
∑
i,j∈[k]
i ̸=j

E[Q4(y)t1(ai,aj,x)]− µ
∑
i∈[k]

E[Q4(y)t2(ai,x)]

+λ
∑
i∈[k]

(E[Q2(y)t3(ai,x)]− 1)2 +
δ

2
∥A∥2F .

95

Fix i, j ∈ [k]. Notice that we have t1(ai,aj,x) = S4(x)(ai,ai,aj,aj)/cg,σ.
Hence we obtain

E[Q4(y)t1(ai,aj,x)] =
1

cg,σ
E[Q4(y) · S4(x)](ai,ai,aj,aj)

=

∑
m∈[k]

E[p∗m(x)](a∗
m)

⊗4

 (ai,ai,aj,aj)

=
∑
m∈[k]

E[p∗m(x)]⟨a∗
m,ai⟩2⟨a∗

m,aj⟩2.

The simplification for the remaining terms is similar and follows directly from
definitions of t2(·,x) and t3(·,x).

B.2.2 Proof of Theorem 3

Proof. The proof is an immediate consequence of Theorem 9 and Theorem
C.5 of [41].

B.2.3 Proof of Theorem 4

Proof. Note that our loss function L4(A) can be written as E[ℓ(x, y,A)]

where ℓ is at most a fourth degree polynomial in x, y and A. Hence our
finite sample guarantees directly follow from Theorem 3 and Theorem E.1
of [41].

B.2.4 Proof of Lemma 6

Proof. The proof of this lemma essentially follows the same arguments as
that of [43, Theorem 1], where we replace (S3(x),S2(x),P3(y),P2(y)) with
(S4(x),S2(x),Q4(y),P2(y)) respectively and letting T3 defined there with our
T4 defined above.

96

B.3 Proofs of Section 3.2.2

For the convergence analysis of SGD on Llog, we use techniques from [27]
and [43]. In particular, we adapt [43, Lemma 3] and [43, Lemma 4] to our
setting through Lemma 7 and Lemma 8, which are central to the proof of
Theorem 5 and Theorem 6. We now sate our lemmas.

Lemma 7. Under the assumptions of Theorem 5, it holds that

∥G(W ,A∗)−W ∗
i ∥ ≤ ρσ∥W −W ∗∥.

In addition, W = W ∗ is a fixed point for G(W ,A∗).

Lemma 8. Let the matrix of regressors A be such that maxi∈[k] ∥A⊤
i −

(A∗
i)

⊤∥2 = σ2ε. Then for any W ∈ Ω, we have that

∥G(W ,A)−G(W ,A∗)∥ ≤ κε,

where κ is a constant depending on g, k and σ. In particular, κ ≤ (k −
1)

√
6(2+σ2)

2
for g =linear, sigmoid and ReLU.

Lemma 9 (Deviation of finite sample gradient operator). For some universal
constant c1, let the number of samples n be such that n ≥ c1d log(1/δ). Then
for any fixed set of regressors A ∈ Rk×d, and a fixed W ∈ Ω, the bound

∥Gn(W ,A)−G(W ,A)∥ ≤ εG(n, δ) ≜ c2

√
d log(k/δ)

n

holds with probability at least 1− δ.

B.3.1 Proof of Theorem 5

Proof. The proof directly follows from Lemma 7 and Lemma 8.

97

B.3.2 Proof of Theorem 6

Proof. Let the set of regressors A be such that maxi∈[k] ∥A⊤
i −(A∗

i)
⊤∥2 = σ2ε1.

Fix A. For any iteration t ∈ [T], from Lemma 9 we have the bound

∥Gn/T (W t,A)−G(W t,A)∥ ≤ εG(n/T, δ/T) (B.2)

with probability at least 1 − δ/T . Using an union bound argument, Equa-
tion B.2 holds with probability at least 1− δ for all t ∈ [T]. Now we show
that the following bound holds:

∥W t+1 −W ∗∥ ≤ ρσ∥W t −W ∗∥+ κε1 + εG(n/T, δ/T), ∀t ∈ {0, . . . , T − 1}.
(B.3)

Indeed, for any t ∈ {0, . . . , T − 1}, we have that

∥W t+1 −W ∗∥ = ∥Gn/T (W t,A)−W ∗∥

≤ ∥Gn/T (W t,A)−G(W t,A)∥+ ∥G(W t,A)−G(W t,A
∗)∥

+ ∥G(W t,A
∗)−W ∗∥

≤ εG(n/T, δ/T) + κε1 + ρσ∥W t −W ∗∥,

where we used in Lemma 7, Lemma 8 and Lemma 9 in the last inequality to
bound each of the terms. From Equation B.2, we obtain that

∥W t −W ∗∥ ≤ ρσ∥W t−1 −W ∗∥+ κε1 + εG(n/T, δ/T)

≤ ρ2σ∥W t−2 −W ∗∥+ (1 + ρσ) (κε1 + εG(n/T, δ/T))

≤ ρtσ∥W 0 −W ∗∥+

(
t−1∑
s=0

ρsσ

)
(κε1 + εG(n/T, δ/T))

≤ ρtσ∥W 0 −W ∗∥+
(

1

1− ρσ

)
(κε1 + εG(n/T, δ/T)) .

98

B.3.3 Proof of Lemma 7

Proof. Recall that the loss function for the population setting, Llog(W ,A),
is given by

Llog(W ,A) = −E log

∑
i∈[k]

e⟨wi,x⟩∑
j∈[k] e

⟨wj ,x⟩
· N (y|g(⟨ai,x⟩), σ2)


= −E log

∑
i∈[k]

pi(x)Ni

 ,

where pi(x) ≜ e⟨wi,x⟩∑
j∈[k] e

⟨wj ,x⟩ and Ni ≜ N (y|g(⟨ai,x⟩), σ2). Hence for any

i ∈ [k − 1], we have

∇wi
Llog(W ,A) = −E

(
∇wi

pi(x)Ni +
∑

j ̸=i,j∈[k]∇wi
pj(x)Nj∑

i∈[k] pi(x)Ni

)
.

Moreover,

∇wi
pj(x) =

pi(x)(1− pi(x))x, j = i

−pi(x)pj(x)x, j ̸= i
.

Hence we obtain that

∇wi
Llog(W ,A) = −E

[
pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

]
. (B.4)

Notice that if z ∈ [k] denotes the latent variable corresponding to which
expert is chosen, we have that the posterior probability of choosing the ith
expert is given by

P (z = i|x, y) = pi(x)Ni∑
i∈[k] pi(x)Ni

,

whereas,

P (z = i|x) = pi(x).

99

Hence, when A = A∗ and W = W ∗, we get that

∇w∗
i
Llog(W

∗,A∗) = −E[P (z = i|x, y)− P (z = i|x)]

= −E[P (z = i|x) + E[P (z = i|x)] = 0.

Thus W = W ∗ is a fixed point for G(W ,A∗) since

G(W ∗,A∗) = ΠΩ(W
∗ − α∇W ∗Llog(W

∗,A∗)) = W ∗.

Now we make the observation that the population-gradient updates W t+1 =

G(W t,A) are same as the gradient-EM updates. Thus the contraction of the
population-gradient operator G(·,A∗) follows from the contraction property of
the gradient EM algorithm [43, Lemma 3]. To see this, recall that for k-MoE,
the gradient-EM algorithm involves computing the function Q(W |W t) for
the current iterate W t and defined as:

Q(W |W t) = E

 ∑
i∈[k−1]

p
(i)
W t

(w⊤
i x)− log

1 +
∑

i∈[k−1]

ew
⊤
i x

 ,

where p
(i)
W t

= P (z = i|x, y,wt) corresponds to the posterior probability for
the ith expert, given by

p
(i)
W t

=
pi,t(x)N (y|g(a⊤

i x), σ
2)∑

j∈[k] pj,t(x)N (y|g(a⊤
j x), σ

2)
, pi,t(x) =

e(wt)⊤i x

1 +
∑

j∈[k−1] e
(wt)⊤j x

.

Then the next iterate of the gradient-EM algorithm is given by W t+1 =

ΠΩ(W t + α∇WQ(W |W t)W=W t). We have that

∇wi
Q(W |W t)|W=W t = E

[(
p
(i)
W t
− e(wt)⊤i x

1 +
∑

j∈[k−1] e
(wt)⊤j x

)
x

]
= −∇wi

Llog(W t,A).

Hence if we use the same step size α, our population-gradient iterates on the
log-likelihood are same as that of the gradient-EM iterates. This finishes the
proof.

100

B.3.4 Proof of Lemma 8

Proof. Fix any W ∈ Ω and let A =

a
⊤
1

. . .

a⊤
k

 ∈ Rk×d be such that maxi∈[k] ∥ai−

a∗
i ∥2 = σ2ε1 for some ε1 > 0. Let

W ′ = G(W ,A), (W ′)∗ = G(W ,A∗).

Denoting the ith row of W ′ ∈ R(k−1)×d by w′
i and that of (W ′)∗ by (w′

i)
∗ for

any i ∈ [k − 1], we have that

∥w′
i − (w′

i)
∗∥2 = ∥ΠΩ(wi − α∇wi

Llog(W ,A))− ΠΩ(wi − α∇wi
Llog(W ,A∗))∥2

≤ α∥∇wi
Llog(W ,A)−∇wi

Llog(W ,A∗)∥2.

Thus it suffices to bound ∥∇wi
Llog(W ,A)−∇wi

Llog(W ,A∗)∥2. From Equa-
tion B.4, we have that

∇wi
Llog(W ,A) = −E

[(
pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

)
x

]
,

∇wi
Llog(W ,A∗) = −E

[(
pi(x)N

∗
i∑

i∈[k] pi(x)N
∗
i

− pi(x)

)
x

]
,

where,

pi(x) =
ew

⊤
i x

1 +
∑

k∈[k−1] e
w⊤

j x
, Ni ≜ N (y|g(a⊤

i x), σ
2),

N∗
i = N (y|g((a∗

i)
⊤x), σ2).

Thus we have

∥∇wi
Llog(W ,A)−∇wi

Llog(W ,A∗)∥2 = ∥E[(p(i)(A,W)− p(i)(A∗,W))x]∥2,
(B.5)

where p(i)(A,W) ≜ pi(x)Ni∑
i∈[k] pi(x)Ni

denotes the posterior probability of choosing

the ith expert. Now we observe that Equation B.5 reduces to the setting
of [43, Lemma 4] and hence the conclusion follows.

101

B.3.5 Proof of Lemma 9

Proof. We first prove the lemma for k = 2. For 2-MoE, we have that the
posterior probability is given by

pw(x, y) =
f(w⊤x)N1

f(w⊤x)N1 + (1− f(w⊤x))N2

,

where f(·) = 1
1+e−(·) , N1 = N (y|g(a⊤

1 x), σ
2) and N2 = N (y|g(a⊤

2 x), σ
2) for

fixed a1,a2 ∈ Rd. Then we have that

∇wLlog(w,A) = −E[(pw(x, y)− f(w⊤x)) · x].

Hence

G(w,A) = ΠΩ(w + αE[(pw(x, y)− f(w⊤x)) · x]),

Gn(w,A) = ΠΩ(w +
α

n

∑
i∈[n]

(pw(xi, yi)− f(w⊤xi)) · xi).

Since 0 < α < 1, we have that

∥G(w,A)−Gn(w,A)∥2

≤ ∥E[(pw(x, y)− f(w⊤x))x]− 1

n

∑
i∈[n]

(pw(xi, yi)− f(w⊤xi))xi∥2

≤ ∥E[pw(x, y)x]−
∑
i∈[n]

pw(xi, yi)xi

n
∥2︸ ︷︷ ︸

T1

+ ∥E[f(w⊤x)x]−
∑
i∈[n]

f(w⊤xi)xi

n
∥2︸ ︷︷ ︸

T2

.

We now bound T1 and T2.

102

Bounding T2: We prove that the random variable
∑

i∈[n]
f(w⊤xi)xi

n
−

E[f(w⊤x)x] is sub-gaussian with parameter L/
√
n for some constant L > 1

and thus its squared norm is sub-exponential. We then bound T2 using
standard sub-exponential concentration bounds. Towards the same, we first
show that the random variable f(w⊤x)x − E[f(w⊤x)x] is sub-gaussian
with parameter L. Or equivalently, that f(w⊤x)⟨x,u⟩ − E[f(w⊤x)⟨x,u⟩] is
sub-gaussian for all u ∈ Sd.

Without loss of generality, assume that w ̸= 0. First let u = w⃗ ≜ w
∥w∥ .

Thus Z ≜ ⟨w⃗,x⟩ ∼ N (0, 1). We have

g(Z) ≜ f(w⊤x)⟨x, w⃗⟩ − E[f(w⊤x)⟨x, w⃗⟩] = f(∥w∥Z)Z − E[f(∥w∥Z)Z].

It follows that g(·) is Lipschitz since

|g′(z)| = |f ′(∥w∥z)∥w∥z + f(∥w∥z))| ≤ sup
t∈R
|f ′(t)t|+ 1

= sup
t>0

tet

(1 + et)2
+ 1 ≜ L.

From the Talagaran concentration of Gaussian measure for Lipschitz functions
[77], it follows that g(Z) is sub-gaussian with parameter L. Now consider
any u ∈ Sd such that u ⊥ w. Then we have that Y ≜ ⟨u,x⟩ ∼ N (0, 1) and
Z ≜ ⟨w⃗,x⟩ ∼ N (0, 1) are independent. Thus,

g(Y, Z) ≜ f(w⊤x)⟨u,x⟩ − E[f(w⊤x)⟨u,x⟩] = f(∥w∥Z)Y − E[f(∥w∥Z)Y]

is sub-gaussian with parameter 1 since f ∈ [0, 1] and Y, Z are independent
standard gaussians. Since any u ∈ Sd can be written as

u = Pw(u) + Pw⊥(u),

where PS denotes the projection operator onto the sub-space S, we have that
f(w⊤x)⟨x,u⟩ − E[f(w⊤x)⟨x,u⟩] is sub-gaussian with parameter L for all
u ∈ Sd. Thus it follows that

∑
i∈[n]

f(w⊤xi)xi

n
−E[f(w⊤x)x] is zero-mean and

sub-gaussian with parameter L/
√
n which further implies that

T2 ≤ c2L

√
d log(1/δ)

n
,

103

with probability at least 1− δ/2.
Bounding T1: Let Z ≜ ∥

∑
i∈[n]

pw(xi,yi)xi

n
−E[pw(x, y)x]∥2 = supu∈Sd Z(u),

where

Z(u) ≜
∑
i∈[n]

pw(xi, yi)⟨xi,u⟩
n

− E[pw(x, y)⟨x,u⟩].

Let {u1, . . . ,uM} be a 1/2-cover of the unit sphere Sd. Hence for any v ∈ Sd,
there exists a j ∈ [M] such that ∥v − uj∥2 ≤ 1/2. Thus,

Z(v) ≤ Z(uj) + |Z(v)− Z(uj)| ≤ Z∥v − uj∥2 ≤ Z(uj) + Z/2,

where we used the fact that |Z(u)− Z(v)| ≤ Z∥u− v∥2 for any u,v ∈ Sd.
Now taking supremum over all v ∈ Sd yields that Z ≤ 2maxj∈[M] Z(uj). Now
we bound Z(u) for a fixed u ∈ Sd. By symmetrization trick [78], we have

P (Z(u) ≥ t) ≤ 2P

(
1

n

n∑
i=1

εipw(xi, yi)⟨xi,u⟩ ≥ t/2

)
,

where ε1, . . . , εn are i.i.d. Rademacher variables. Define the event E ≜

{ 1
n

∑
i∈[n]⟨xi,u⟩2 ≤ 2}. Since ⟨xi,u⟩ ∼ N (0, 1), standard tail bounds imply

that P (Ec) ≤ e−n/32. Thus we have that

P (Z(u) ≥ t) ≤ 2P

(
1

n

n∑
i=1

εipw(xi, yi)⟨xi,u⟩ ≥ t/2|E

)
+ 2e−n/32.

Considering the first term, for any λ > 0, we have

E[exp

(
λ

n

n∑
i=1

εipw(xi, yi)⟨xi,u⟩

)
|E] ≤ E[exp

(
2λ

n

n∑
i=1

εi⟨xi,u⟩

)
|E],

where we used the Ledoux-Talagrand contraction for Rademacher process [77],
since |pw(xi, yi)| ≤ 1 for all (xi, yi). The sub-gaussianity of Rademacher
sequence {εi} implies that

E[exp

(
2λ

n

n∑
i=1

εi⟨xi,u⟩

)
|E] ≤ E[exp

(
2λ2

n2

n∑
i=1

⟨xi,u⟩2
)
|E] ≤ exp(

4λ2

n
),

104

using the definition of the event E. Thus the above bound on the moment
generating function implies the following tail bound:

P

(
1

n

n∑
i=1

εipw(xi, yi)⟨xi,u⟩ ≥ t/2|E

)
≤ exp

(
−nt2

256

)
.

Combining all the bounds together, we obtain that

P (Z(u) ≥ t) ≤ 2e−nt2/256 + 2e−n/32.

Since M ≤ 2d, using the union bound we obtain that

P (Z ≥ t) ≤ 2d(2e−nt2/1024 + 2e−n/32).

Since n ≥ c1d log(1/δ), we have that T1 = Z ≤ c
√

d log(1/δ)
n

with probability
at least 1− δ/2. Combining these bounds on T1 and T2 yields the final bound
on εG(n, δ).

Now consider any k ≥ 2. From Equation B.4, defining Ni ≜ N (y|g(a⊤
i x), σ

2)

and pi(x) =
ew

⊤
i x

1+
∑

j∈[k−1] e
w⊤

j
x
, we have that

∇wi
Llog(W ,A) = −E

(
pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

)
x.

Similarly,

∇wi
L
(n)
log (W ,A) = −

n∑
j=1

1

n

(
pi(xj)Ni∑
i∈[k] pi(xj)Ni

− pi(xj)

)
xj.

Since ∥Gn(W ,A)−G(W ,A)∥ = maxi∈[k−1] ∥Gn(W ,A)i−G(W ,A)i∥2, with
out loss of generality, we let i = 1. The proof for the other cases is similar.
Thus we have

∥Gn(W ,A)1 −G(W ,A)1∥2 ≤ ∥∇w1Llog(W ,A)−∇w1L
(n)
log (W ,A)∥2

≤ ∥
n∑

i=1

p(1)(xi, yi)xi

n
− E[p(1)(x, y)x]∥2

+ ∥
n∑

i=1

p1(x)x

n
− E[p1(x)x]∥2,

105

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
gr

es
so

r e
rro

r:


re
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our L4(⋅)

(a) Regressor error

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.2

0.4

0.6

0.8

Ga
tin

g
er

ro
r:


ga

tin
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our Llog(⋅)

(b) Gating error

Figure B.1: Comparison of SGD on our losses (L4, Llog) vs. ℓ2 and the EM
algorithm.

where p(1)(x, y) ≜ p1(x)N1∑
i∈[k] pi(x)Ni

. Since |p(1(x, y)| ≤ 1 and |p1(x)| ≤ 1, we can
use the same argument as in the bounding of T1 proof for 2-MoE above to
get the parametric bound. This finishes the proof.

B.4 Additional experiments

B.4.1 Reduced batch size

In Figure B.1 we ran SGD on our loss L4(·) with five different runs with a
batch size of 128 and a learning rate of 0.001 for d = 10 and k = 3. We
can see that our algorithm still converges to zero but with more variance
because of noisy gradient estimation and also lesser number of samples than
the required sample complexity.

106

Appendix C

Appendix for Chapter 4

C.1 Polar(64, 7) code

Recall from Section 4.5 that the Plotkin tree for a Polar code is obtained
by freezing a set of leaves in a complete binary tree. These frozen leaves are
chosen according to the reliabilities, or equivalently, error probabilities of
their corresponding bit channels. In other words, we first approximate the
error probabilities of all the n-bit channels and pick the k-smallest of them
using the procedure from [79]. These k active set of leaves correspond to the
transmitted message bits, whereas the remaining n− k frozen leaves always
transmit zero.

Here we focus on a specific Polar code: Polar(64, 7), with code dimension
k = 7 and blocklength n = 64. For Polar(64, 7), we obtain these active
set of leaves to be A = {48, 56, 60, 61, 62, 63, 64}, and the frozen set to be
Ac = {1, 2, · · · 64}\A. Using these set of indices and simplifying the redundant
branches, we obtain the Plotkin tree for Polar(64, 7) to be Figure C.1. We
observe that this Polar Plotkin tree shares some similarities with that of a
RM(6, 1) code (with same k = 7 and n = 64) with key differences at the
topmost and bottom most leaves.

Capitalizing on the encoding tree structure of Polar(64, 7), we build a
corresponding KO encoder gθ which inherits this tree skeleton. In other
words, we generalize the Plotkin mapping blocks at the internal nodes of
tree, except for the root node, and replace them with a corresponding neural
network gi. Figure C.1 depicts the Plotkin tree of our KO encoder. The
KO decoder fϕ is designed similarly. Training of the (encoder, decoder) pair
(gθ, fϕ) is similar to that of the KO(8, 2) training which we detail in §4.4.

107

Figure C.2 shows the BLER performance of the Polar(64, 7) code and its
competing KO code for the AWGN channel. Similar to the BER performance
analyzed in Figure 4.10, the KO code is able to significantly improve the
BLER performance. For example, we achieve a gain of around 0.5 dB when
KO encoder is combined with the MAP decoding. Additionally, the close
performance of the KO decoder to that of the MAP decoder confirms its
optimality.

Figure C.2: KO code achieves a significant gain over the Polar(64, 7) code in
BLER when trained on AWGN channel. KO decoder also matches the
optimal MAP decoder.

108

C.2 Gains with list decoding

Successive cancellation decoding can be significantly improved by list decoding.
List decoding allows one to gracefully trade off computational complexity
and reliability by maintaining a list (of a fixed size) of candidate codewords
during the decoding process. The following figure demonstrates that KO(8,2)
code with list decoding enjoys a significant gain over the non-list counterpart.
This promising result opens several interesting directions which are current
focuses of active research.

Polar codes with list decoding achieves the state-of-the-art performances [54].
It is a promising direction to design large block-lengths KO codes (based
on the skeleton of Polar codes) that can improve upon the state-of-the-art
list-decoded Polar codes. One direction is to train KO codes as we propose
and include list decoding after the training. A more ambitious direction is
to include list decoding in the training, potentially further improving the
performance by discovering an encoder tailored for list decoding.

Unlike Polar codes, RM codes have an extra structure of an algebraic
symmetry; a RM codebook is invariant under certain permutations. This
can be exploited in list decoding as shown in [1], to get a further gain over
what is shown in Figure C.3. However, when a KO code is trained based on
a RM skeleton, this symmetry is lost. A question of interest is whether one
can discover nonlinear codes with such symmetry.

C.3 Discussion

C.3.1 On modulation and practicality of KO codes

We note that our real-valued KO codewords are entirely practical in wireless
communication; the peak energy of a symbol is only 22.48% larger than the
average in KO codes. The impact on the power amplifier is not any different
from that of a more traditional modulation (like 16-QAM). Training KO code
is a form of jointly designing the coding and modulation steps; this approach
has a long history in wireless communication (e.g., Trellis coded modulation)
but the performance gains have been restricted by the human ingenuity in
constructing the heuristics.

109

C.3.2 Comparison with LDPC and BCH codes

We expect good performance for BCH at the short blocklengths considered
in the paper though with high-complexity (polynomial time) decoders such
as ordered statistics decoder (OSD). On the other hand, there does not exist
good LDPC codes at the k and n regimes of this paper; thus, we do not
expect good performance for LDPC at these regimes.

C.4 Plotkin construction

[50] proposed this scheme in order to combine two codes of smaller code
lengths and construct a larger code with the following properties. It is
relatively easy to construct a code with either a high rate but a small distance
(such as sending the raw information bits directly) or a large distance but a
low rate (such as repeating each bit multiple times). Plotkin construction
combines such two codes of rates ρu > ρv and distances du < dv, to design
a larger block length code satisfying rate ρ = (ρu + ρv)/2 and distance
min{2du, dv}. This significantly improves upon a simple time-sharing of those
codes, which achieves the same rate but distance only min{du, dv}.

Note: Following the standard convention, we fix the leaves in the Plotkin
tree of a first order RM(m, 1) code to be zeroth order RM codes and the
full-rate RM(1, 1) code. On the other hand, a second order RM(m, 2) code
contains the first order RM codes and the full-rate RM(2, 2) as its leaves.

C.5 KO(8, 2): Architecture and training

As highlighted in §4.4, our KO codes improve upon RM codes significantly
on a variety of benchmarks. We present the architectures of the KO(8, 2)

encoder, the KO(8, 2) decoder, and their joint training methodology that are
crucial for this superior performance.

110

C.5.1 KO(8, 2) encoder

Architecture. KO(8, 2) encoder inherits the same Plotkin tree structure as
that of the second order RM(8, 2) code and thus RM codes of first order and
the second order RM(2, 2) code constitute the leaves of this tree, as highlighted
in Figure C.4b. On the other hand, a critical distinguishing component of
our KO(8, 2) encoder is a set of encoding neural networks gθ = {g1, . . . , g6}
that strictly generalize the Plotkin mapping. In other words, we associate a
neural network gi ∈ gθ to each internal node i of this tree. If v and u denote
the codewords arriving from left and right branches at this node, we combine
them non-linearly via the operation (u,v) 7→ gi(u,v).

We carefully parametrize each encoding neural network gi so that they
generalize the classical Plotkin map Plotkin(u,v) = (u,u⊕ v). In particular,
we represent them as gi(u,v) = (u, g̃i(u,v) + u⊕ v), where g̃i : R2 → R is
a neural network of input dimension 2 and output size 1. Here g̃i is applied
coordinate-wise on its inputs u and v. This clever parametrization can also be
viewed as a skip connection on top of the Plotkin map. Similar skip-like ideas
have been successfully used in the literature though in a different context of
learning decoders [10]. On the other hand, we exploit these ideas for both
encoders and decoders which further contribute to significant gains over RM
codes.

Encoding. From an encoding perspective, recall that the KO(8, 2) code
has code dimension k = 37 and block length n = 256. Suppose we wish to
transmit a set of 37 message bits denoted as m = (m(2,2),m(2,1), . . . ,m(7,1))

through our KO(8, 2) encoder. We first encode the block of four message
bits m(2,2) into a RM(2, 2) codeword c(2,2) using its corresponding encoder
at the bottom most leaf of the Plotkin tree. Similarly we encode the next
three message bits m(2,1) into an RM(2, 1) codeword c(2,1). We combine these
codewords using the neural network g6 at their parent node which yields
the codeword c(3,2) = g6(c(2,2), c(2,1)) ∈ R8. The codeword c(3,2) is similarly
combined with its corresponding left codeword and this procedure is thus
recursively carried out till we reach the top most node of the tree which
outputs the codeword c(8,2) ∈ R256. Finally we obtain the unit-norm KO(8, 2)

codeword x by normalizing c(8,2), i.e. x = c(8,2)/∥c(8,2)∥2.

111

Note that the map of encoding the message bits m into the codeword x,
i.e. x = gθ(m), is differentiable with respect to θ since all the underlying
operations at each node of the Plotkin tree are differentiable.

C.5.2 KO(8, 2) decoder

Architecture. Capitalizing on the recursive structure of the encoder, the
KO(8, 2) decoder decodes the message bits from top to bottom, similar in
style to Dumer’s decoding in §4.2. More specifically, at any internal node
of the tree we first decode the message bits along its left branch, which we
utilize to decode that of the right branch and this procedure is carried out
recursively till all the bits are recovered. At the leaves, we use the Soft-MAP
decoder to decode the bits.

Similar to the encoder gθ, an important aspect of our KO(8, 2) decoder
is a set of decoding neural networks fϕ = {f1, f2, . . . , f11, f12}. For each
node i in the tree, f2i−1 : R2 → R corresponds to its left branch whereas
f2i : R4 → R corresponds to the right branch. The pair of decoding neural
networks (f2i−1, f2i) can be viewed as matching decoders for the correspond-
ing encoding network gi: While gi encodes the left and right codewords
arriving at this node, the outputs of f2i−1 and f2i represent appropriate
Euclidean feature vectors for decoding them. Further, f2i−1 and f2i can also
be viewed as a generalization of Dumer’s decoding to nonlinear real code-
words: f2i−1 generalizes the LSE function, while f2i extends the operation
⊕v̂. More precisely, we represent f2i−1(y1,y2) = f̃2i−1(y1,y2) + LSE(y1,y2)

whereas f2i(y1,y2,yv, v̂) = f̃2i(y1,y2,yv, v̂) + y1 + (−1)v̂y2, where (y1,y2)

are appropriate feature vectors from the parent node, and yv is the feature
corresponding to the left-child v, and v̂ is the decoded left-child codeword.
We explain about these feature vectors in more detail below. Note that both
the functions f̃2i−1 and f̃2i are also applied coordinate-wise.

112

Decoding. At the decoder, suppose we receive a noisy codeword y ∈ R256

at the root upon transmission of the actual codeword x ∈ R256 along the chan-
nel. The first step is to obtain the LLR feature for the left RM(7, 1) codeword;
we obtain this via the left neural network f1, i.e. yv = f1(y1:128,y129:256) ∈
R128. Subsequently, the Soft-MAP decoder transforms this feature into an
LLR vector for the message bits, i.e. L(7,1) = Soft-MAP(f1(y1:128,y129:256)).
Note that the message bits m(7,1) can be hard decoded directly from the
sign of L(7,1). Instead here we use their soft version via the sigmoid function
σ(·), i.e., m̂(7,1) = σ(L(7,1)). Thus we obtain the corresponding RM(7, 1)

codeword v̂ by encoding the message m̂(7,1) via an RM(7, 1) encoder. The
next step is to obtain the feature vector for the right child. This is done
using the right decoder f2, i.e. yu = f2(y1:128,y129:256,yv, v̂). Utilizing this
right feature yu the decoding procedure is thus recursively carried out till
we compute the LLRs for all the remaining message bits m(6,1), . . . ,m(2,2)

at the leaves. Finally we obtain the full LLR vector L = (L(7,1), . . . ,L(2,2))

corresponding to the message bits m. A simple sigmoid transformation, σ(L),
further yields the probability of each of these message bits being zero, i.e.
σ(L) = P (m = 0).

Note that the decoding map fϕ : y 7→ L is fully differentiable with respect
to ϕ, which further ensures a differentiable loss for training the parameters
(θ, ϕ).

C.5.3 Training

Recall that we have the following flow diagram from encoder till the decoder
when we transmit the message bits m: m

gθ−→ x
Channel−−−−−→ y

fϕ−→ L
σ(·)−−→ σ(L).

In view of this, we define an end-to-end differentiable cross entropy loss
function to train the parameters (θ, ϕ), i.e.

L(θ, ϕ) =
∑
j

mj log(1− σ(Lj)) + (1−mj) log σ(Lj).

Finally we run Algorithm 3 on the loss L(θ, ϕ) to train the parameters (θ, ϕ)

via gradient descent.

113

C.6 Soft-MAP decoder

As discussed earlier (see also Figure C.5), Dumer’s decoder for second-order
RM codes RM(m, 2) performs MAP decoding at the leaves while our KO de-
coder applies Soft-MAP decoding at the leaves. The leaves of both RM(m, 2)

and KO(m, 2) codes are comprised of order-one RM codes and the RM(2, 2)

code. In this section, we first briefly state the MAP decoding rule over general
binary-input memoryless channels and describe how the MAP rule can be
obtained in a more efficient way, with complexity O(n log n), for first-order
RM codes. We then present the generic Soft-MAP decoding rule and its
efficient version for first-order RM codes.

MAP decoding. Given a length-n channel LLR vector l ∈ Rn correspond-
ing to the transmission of a given (n, k) code, i.e. code dimension is k and
block length is n, with codebook C over a general binary-input memoryless
channel, the MAP decoder picks a codeword c∗ according to the following
rule [56]

c∗ = argmax
c∈C

⟨l, 1− 2c⟩, (C.1)

114

where ⟨·, ·⟩ denotes the inner-product of two vectors. Obviously, the MAP
decoder needs to search over all 2k codewords while each time computing
the inner-product of two length-n vectors. Therefore, the MAP decoder has
a complexity of O(n2k). Thus the MAP decoder can be easily applied
to decode small codebooks like an RM(2, 2) code, that has blocklength
n = 4 and a dimension k = 4, with complexity O(1). On the other hand,
a naive implementation of the MAP rule for RM(m, 1) codes, that have
2k = 2m+1 = 2n codewords, requires O(n2) complexity. However, utilizing
the special structure of order-1 RM codes, one can apply the fast Hadamard
transform (FHT) to implement their MAP decoding in a more efficient way,
i.e., with complexity O(n log n). The idea behind the FHT implementation
is that the standard n× n Hadamard matrix H contains half of the the 2n

codewords of an RM(m, 1) code (in ±1), and the other half are just −H.
Therefore, FHT of the vector l, denoted by lWH, lists half of the 2n inner-
products in (C.1), and the other half are obtained the as −lWH. Therefore,
the FHT version of the MAP decoder for first-order RM codes can be obtained
as

c∗ = (1− sign(lWH(i
∗))hi∗)/2 s.t. i∗ = argmax

i∈[n]
|lWH(i)|, (C.2)

where lWH(i) is the i-th element of the vector lWH, and hi is the i-th row of
the matrix H. Given that lWH can be efficiently computed with O(n log n)

complexity, the FHT version of the MAP decoder for the first-order RM codes,
described in (C.2), has a complexity of O(n log n).

Soft-MAP. Note that the MAP decoder and its FHT version involve
argmax(·) operation which is not differentiable. In order to overcome this
issue, we obtain the soft-decision version of the MAP decoder, referred to as
Soft-MAP decoder, to come up with differentiable decoding at the leaves [80].
The Soft-MAP decoder obtains the soft LLRs instead of hard decoding of
the codes at the leaves. Particularly, consider an AWGN channel model as
y = s+n, where y is the length-n vector of the channel output, s := 1− 2c,
c ∈ C, and n is the vector of the Gaussian noise with mean zero and variance
σ2 per element. The LLR of the i-th information bit ui is then defined as

linf(i) := ln

(
Pr(ui = 0|y)
Pr(ui = 1|y)

)
. (C.3)

115

By applying the Bayes’ rule, the assumption of Pr(ui = 0) = Pr(ui = 1), the
law of total probability, and the distribution of the Gaussian noise, we can
write (C.3) as

linf(i) = ln

(∑
s∈C0

i
exp (−||y − s||22/σ2)∑

s∈C1
i
exp (−||y − s||22/σ2)

)
. (C.4)

We can also apply the max-log approximation to approximate (C.4) as follows.

linf(i) ≈
1

σ2
min
c∈C1

i

||y − s||22 −
1

σ2
min
c∈C0

i

||y − s||22, (C.5)

where C0i and C1i denote the subsets of codewords that have the i-th information
bit ui equal to zero and one, respectively. Finally, given that the length-n
LLR vector of the cahhnel output can be obtained as l := 2y/σ2 for the
AWGN channels, and assuming that all the codewords s’s have the same
norm, we obtain a more useful version of the Soft-MAP rule for approximating
the LLRs of the information bits as

linf(i) ≈ max
c∈C0

i

⟨l, 1− 2c⟩ − max
c∈C1

i

⟨l, 1− 2c⟩. (C.6)

It is worth mentioning at the end that, similar to the MAP rule, one can
compute all the 2k inner products in O(n2k) time complexity, and then obtain
the soft LLRs by looking at appropriate indices. As a result, the complexity of
the Soft-MAP decoding for decoding RM(m, 1) and RM(2, 2) codes is O(n2)

and O(1) respectively. However, one can apply an approach similar to (C.2)
to obtain a more efficient version of the Soft-MAP decoder, with complexity
O(n log n), for decoding RM(m, 1) codes.

C.7 Experimental details

We provide our code at https://github.com/deepcomm/KOcodes.

116

https://github.com/deepcomm/KOcodes

Algorithm 3 Training algorithm for KO(8,2)
Input: number of epochs T , number of encoder training steps Tenc, number
of decoder training steps Tdec, encoder training SNR SNRenc, decoder
training SNR SNRdec, learning rate for encoder lrenc, learning rate for
decoder lrdec
Initialize (θ, ϕ)
for T steps do

for Tdec steps do
Generate a minibatch of random message bits m
Simulate AWGN channel with SNRdec

Fix θ, update ϕ by minimizing L(θ, ϕ) using Adam with lrdec
end for
for Tenc steps do

Generate a minibatch of random message bits m
Simulate AWGN channel with SNRenc

Fix ϕ, update θ by minimizing L(θ, ϕ) using Adam with lrenc
end for

end for
Output: (θ, ϕ)

C.7.1 Hyper-parameter choices for KO(8,2)

We choose batch size B = 50000, encoder training SNR SNRenc = −3dB,
decoder trainint SNR SNRdec = −5dB, number of epochs T = 2000, number of
encoder training steps Tenc = 50, number of decoder training steps Tdec = 500.
For Adam optimizer, we choose learning rate for encoder lrenc = 10−5 and for
decoder lrdec = 10−4.

117

C.7.2 Neural network architecture of KO(8,2)

Initialization

We design our (encoder, decoder) neural networks to generalize and build
upon the classical (Plotkin map, Dumer’s decoder). In particular, as dis-
cussed in Section C.5.1, we parameterize the KO encoder gθ, as gi(u,v) =

(u, g̃i(u,v) + u⊕ v), where g̃ : R2 → R is a fully connected neural network,
which we delineate in Section C.7.2. Similarly, for KO decoder, we parametrize
it as f2i−1(y1,y2) = f̃2i−1(y1,y2) + LSE(y1,y2) and f2i(y1,y2,yv, v̂) =

f̃2i(y1,y2,yv, v̂) + y1 + (−1)v̂y2, where f̃2i−1 : R2 → R and f̃2i : R4 → R
are also fully connected neural networks whose architectures are described
in Section C.7.2 and Section C.7.2. If f̃ ≈ 0 and g̃ ≈ 0, we are able to thus
recover the standard RM(8, 2) encoder and its corresponding Dumer decoder.
By initializing all the weight parameters (θ, ϕ) sampling from N (0, 0.022), we
are able to approximately recover the performance RM(8, 2) at the beginning
of the training which acts as a good initialization for our algorithm.

Architecture of g̃i

• Dense(units=2× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

Architecture of f̃2i

• Dense(units=4× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

118

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

Architecture of f̃2i−1

• Dense(units=2× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 32)

• SeLU()

• Dense(units=32× 1)

C.8 Results for Order-1 codes

Here we focus on first order KO(m, 1) codes, and in particular KO(6, 1) code
that has code dimension k =7 and blocklength n = 64. The training of
the (encoder, decoder) pair (gθ, fϕ) for KO(6, 1)is almost identical to that of
the second order RM(8, 2) described in §4.3. The only difference is that we
now use the Plotkin tree structure of the corresponding RM(6, 1) code. In
addition, we also train our neural encoder gθ together with the differentiable
MAP decoder, i.e. the Soft-MAP, to compare its performance to that of the
RM codes. Figure C.6 illustrates these results.

The left panel of Figure C.6 highlights that KO(6, 1) obtains significant
gain over RM(6, 1) code (with Dumer decoder) when both the neural encoder
and decoder are trained jointly. On the other hand, in the right panel, we
notice that we match the performance of that of the RM(6, 1) code (with the
MAP decoder) when we just train the encoder gθ (with the MAP decoder).
In other words, under the optimal MAP decoding, KO(6, 1) and RM(6, 1)

codes behave the same. Note that the only caveat for KO(6, 1) in the second
setting is that its MAP decoding complexity is O(n2) while that of the RM is
O(n log n).

119

Figure C.6: KO(6, 1) code. Left: KO(6, 1) code achieves significant gain
over RM(6, 1) code (with Dumer) when trained on AWGN channel. Right:
Under the optimal MAP decoding, KO(6, 1) and RM(6, 1) codes achieve the
same performance. Error rates for a random Gaussian codebook are also
plotted as a baseline.

120

Polar(64, 7)

Plotkin

RM(5,0) Plotkin

RM(4,0) Plotkin

RM(3,0) Plotkin

RM(2,0) Plotkin

PlotkinPlotkin

RM(0,0)RM(0,0)RM(0,0)RM(0,0)

RM(1,1)RM(1,1)

RM(2,2)

0

m7

m6

m5

m4 m3 m2 m1

(a) Polar(64, 7) encoder

KO counterpart of Polar(64, 7)

Plotkin

RM(5,0) g1(·)

RM(4,0) g2(·)

RM(3,0) g3(·)

RM(2,0) g4(·)

g5(·)g6(·)

RM(0,0)RM(0,0)RM(0,0)RM(0,0)

0

m7

m6

m5

m4 m3 m2 m1

(b) Our KO encoder counterpart

Figure C.1: Plotkin trees for the Polar(64, 7) encoder and our neural
KO encoder counterpart. Both codes have dimension k = 7 and blocklength
n = 64.

121

Figure C.3: The same KO(8,2) encoder and decoder as those used in
Figure 4.4 achieve a significant gain (without any retraining or fine-tuning)
when list decoding is used together with the KO decoder. The magnitude of
the gain is comparable to the gain achieved by the same list decoding
technique on the successive cancellation decoder of the RM(8,2) code. We
used the list decoding from [1] but without the permutation technique.

122

RM(8,2)

Plotkin

RM(7,1) Plotkin

RM(6,1) RM(6,2)

Plotkin

RM(2,1) RM(2,2)

RM(7,2)

RM(3,2)

m(7,1)

m(6,1)

m(2,1) m(2,2)

(a) RM(8,2) encoder

KO(8,2)

g1(·)

RM(7,1) g2(·)

RM(6,1)

g6(·)

RM(2,1) RM(2,2)

m(7,1)

m(6,1)

m(2,1) m(2,2)

(b) KO(8,2) encoder

Figure C.4: Plotkin trees for RM(8,2) and KO(8,2) encoders. Leaves are
highlighted in green. Both codes have dimension k = 37 and blocklength
n = 256.

123

y L

MAP dec. Lu

MAP dec.

L(3,2)
u

MAP dec. MAP dec.

m̂(7,1)

m̂(6,1)

m̂(2,1) m̂(2,2)

LSE ⊕v̂

LSE ⊕v̂

LSE ⊕v̂

(a) RM(8, 2) decoder

y

Soft-MAP yu

Soft-MAP

y
(3,2)
u

Soft-MAP Soft-MAP

m̂(7,1)

m̂(6,1)

m̂(2,1) m̂(2,2)

f1 f2

f3 f4

f11 f12

(b) KO(8, 2) decoder

Figure C.5: Plotkin trees for the RM(8, 2) and KO(8, 2) decoders. Red
arrows indicate the bit decoding order.

124

	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of this dissertation
	1.2 Bibliographical note

	Chapter 2 Mixture-of-Experts: Consistent and Efficient Algorithms
	2.1 Background on Mixture-of-Experts (MoE)
	2.2 Algorithms
	2.3 The proposed algorithm for learning MoE
	2.4 Theoretical analysis
	2.5 Experiments
	2.5.1 Non-gaussian inputs
	2.5.2 Non-orthogonal parameters
	2.5.3 Comparison to joint-EM

	Chapter 3 Mixture-of-Experts: Learning via Gradient Descent
	3.1 Connection between k-MoE and other popular models
	3.2 Optimization landscape design for MoE
	3.2.1 Loss function for regressors: L4
	3.2.2 Loss function for gating parameters: Llog

	3.3 Experiments
	3.3.1 Robustness to technical assumptions

	Chapter 4 KO Codes: Novel Neural Codes
	4.1 Introduction
	4.2 Problem formulation and background
	4.2.1 Channel coding
	4.2.2 Reed-Muller (RM) codes

	4.3 KO codes: Novel Neural codes
	4.4 Main results
	4.4.1 KO codes improve over RM codes
	4.4.2 Interpreting KO codes
	4.4.3 Robustness to non-AWGN channels
	4.4.4 Ablation studies
	4.4.5 Complexity of KO decoding

	4.5 KO codes improve upon Polar codes
	4.6 Tiny KO

	Chapter 5 Conclusion
	References
	Appendix A Appendix for Chapter 2
	A.1 Toolbox for method of moments
	A.1.1 Toolbox for EM convergence analysis

	A.2 Class of non-linearities
	A.3 Proofs of Section 2.4
	A.4 Proof of Theorem 1 for k=2
	A.5 Proof of Theorem 1 for general k
	A.6 Proof of Theorem 2
	A.7 Proof of Lemma 8
	A.8 Proof of Lemma 7
	A.9 Proof for k=2
	A.10 Proof for general k
	A.11 Gradient EM algorithm
	A.12 Additional experiments
	A.12.1 Synthetic data
	A.12.2 Real data

	Appendix B Appendix for Chapter 3
	B.1 Valid class of non-linearities
	B.2 Proofs of Section 3.2.1
	B.2.1 Proof of Theorem 9
	B.2.2 Proof of Theorem 3
	B.2.3 Proof of Theorem 4
	B.2.4 Proof of Lemma 6

	B.3 Proofs of Section 3.2.2
	B.3.1 Proof of Theorem 5
	B.3.2 Proof of Theorem 6
	B.3.3 Proof of Lemma 7
	B.3.4 Proof of Lemma 8
	B.3.5 Proof of Lemma 9

	B.4 Additional experiments
	B.4.1 Reduced batch size

	Appendix C Appendix for Chapter 4
	C.1 Polar(64,7) code
	C.2 Gains with list decoding
	C.3 Discussion
	C.3.1 On modulation and practicality of KO codes
	C.3.2 Comparison with LDPC and BCH codes

	C.4 Plotkin construction
	C.5 KO(8,2): Architecture and training
	C.5.1 KO(8,2) encoder
	C.5.2 KO(8,2) decoder
	C.5.3 Training

	C.6 Soft-MAP decoder
	C.7 Experimental details
	C.7.1 Hyper-parameter choices for KO(8,2)
	C.7.2 Neural network architecture of KO(8,2)

	C.8 Results for Order-1 codes

